Zurück zur Übersicht

Biozide aus offenen Kühltürmen

Kraftwerke und Industrie nutzen Wasser aus Oberflächengewässern, um ihre Anlagen auf Betriebstemperatur zu halten. Dies geschieht in großen, meist offenen Kreislaufkühlsystemen. Um das Ökosystem von Flüssen und Seen zu schützen, darf das Kühlwasser auf maximal 25 °C erwärmt werden, wenn es zurück in die Gewässer gelangt. Um zu verhindern, dass sich im warmen Wasser krankheitserregende Keime und Bakterien ansiedeln, setzen die Anlagen oft Biozide ein. Diese Biozide jedoch gelangen, zusammen mit toxischen Abbaustoffen, zum Beispiel aus dem Korrosionsschutz, in die Gewässer und damit in den Wasserkreislauf. Die Menge und Art an toxischen Stoffen, die so ins Wasser gelangen, ist ebenso wenig bekannt, wie ihre Auswirkung auf Trinkwasserqualität und Ökosysteme.

Zusammen mit dem Karlsruher Technologiezentrum Wasser (TZW) evaluiert die Arbeitsgemeinschaft Wasserwerke Bodensee-Rhein (AWBR) Ausmaß und Risiken und schlägt schließlich umweltfreundlichere Alternativen vor. Hierzu erarbeiten die Wissenschaftler zuerst eine Liste der häufigsten Substanzen und ermitteln im Labor, ob herkömmliche Reinigungsverfahren diese Stoffe aus dem Wasser entfernen können. Außerdem untersuchen die Wissenschaftler, wie die Einsatzstoffe auf den menschlichen Organismus wirken und ermitteln Empfehlungen für die Wasserversorgung. Für die Kühlanlagen erstellt das Projekt Richtlinien, die den Betreiber hilft abzuschätzen, wann wie viele Chemikalien nötig sind. Die Betreiber können so ihren Verbrauch reduzieren und wenn möglich auf umweltfreundlichere Substanzen zurückgreifen.

Das Pilotprojekt liefert erstmals Daten für ein noch wenig erforschtes Problemfeld der Wasserwirtschaft. Die entstehende Datenbank bietet eine Übersicht über herkömmliche Anlagentypen, die Zusammenstellung und Risiken der Einsatzstoffe sowie Empfehlungen für einen effizienteren Einsatz. Für Wasserversorger, Behörden und Anlagenbetreiber ist das Projekt ein wichtiger erster Schritt, um den Risiken der Kühlwasserbehandlung kompetent zu begegnen.

Projektdaten

Projektnummer 2013-08
Projektart Forschung und Studien
Projektträger Arbeitsgemeinschaft Wasserwerke Bodensee-Rhein
Laufzeit Juli 2013 bis Juni 2015
Zuschuss 174.170

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Energienetzmanagement dezentraler, wärmegeführter BHKW
Offenburg

Ein intelligentes Netz für BHKW

Wenn mehr und mehr dezentrale Wind-, Wasser- und Photovoltaikanlagen Strom ins Netz einspeisen, müssen Netzbetreiber flexibel reagieren, um Überlastungen oder Engpässe zu verhindern. So genannte demand-response Systeme nutzen dafür zu- und abschaltbare Elemente wie beispielsweise BHKWs. Für die Betreiber von BHKWs jedoch ist es am wirtschaftlichsten, wenn ihre Anlagen durchgehend laufen. In drei Teilprojekten entwickelte das Institut für Energiesystemtechnik der Hochschule Offenburg ein Energienetzmanagement, das beide Ziele vereint. Dazu erstellten sie ein Netzmanagement am Geflügelhof Zapf in Gengenbach. Dort stellte der Lebensmittelbetrieb in einem weiteren Innovationsfondprojekt seine Energieversorgung auf drei Holzvergasern um. Die Hochschule baute zunächst ein Messsystem auf, erfasste, wie viel Energie die Produktion überhaupt benötigt und modellierte mit Hilfe spezieller Software ein Netz, das flexibel auf Strom- und Wärmebedarf reagieren kann. Im Testbetrieb entstand so ein Modell, das die Wissenschaftler anschließend auf andere Kleinnetze anwenden können. Für die Stadt Offenburg erstellten die Wissenschaftler ein weiteres System, um das städtische Teilnetz aus fünf BHKWs und kommunalem Gebäudepool wirtschaftlich und ressourcenschonend zu betreiben. Über die bereits vorhandene Gebäudeautomation wurde gemessen, wie viel Energie aus BHKW und Netzstrom einfloss und bezogen auch Wetterprognosen und mögliche Speicher mit ein. Ziel war es, durch eine zentrale Steuerung die BHKWs möglichst ununterbrochen zu betreiben und ihre Energie im Netz optimal zu nutzen. Bei Bedarf könnten solche intelligenten Kleinnetze in Zukunft in größere Netzverbunde integriert werden ohne die lokalen Betreiber einzuschränken. Kombiniert mit den Ergebnissen aus den beiden anderen Teilprojekten entwickelte die Hochschule schließlich ein eigenes Stromnetz für Lehre und Forschung, mit verschiedenen Energiequellen sowie thermischen und chemischen Speichern. Die Hochschule baute so ihre Kompetenzen in der Systemanalyse aus und zeigt neue Wege auf, um Energienetze optimal zu betreiben. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Im Nachhinein muß das Projekt als sehr ambitiös eingestuft werden, konnte jedoch nach mehreren Verlängerungen erfolgreich abgeschlossen werden. Dabei wurde der notwendige Umfang den ein komplexes Energienetzmanagement fordert sehr deutlich. Dies gilt insbesondere dann, wenn mehrere innovative Komponenten und Verfahren zum Einsatz kommen. Schritte zur Optimierung der automations- und energiemeßtechnischen Ausrüstung wurden unternommen, um Labornetze mit Schnittstellen zu versehen, die Smart Grid – Funktionen erst ermöglichen. Es zeigte sich, dass viele verfügbare Produkte langfristig nicht für den Betrieb in flexiblen Netzen geeignet sind. Den Partnern stehen nun gut ausgerüstete Reallabore zur Verfügung, um Microgrids im Sinne von Smart Grids zu vernetzen und vernetzt zu untersuchen. Mit Weiterentwicklungen bei modellbasierten Prognosen und Algorithmen wurden wichtige Schritte zur Validierung gemacht. Die Arbeit werden fortgesetzt und sind Teil aktueller Forschungsaufgaben.

Innovative Konzepte zur Wassereinsparung bei Sportvereinen
Freiburg

Innovatives Wassersparen in Sportvereinen

Mit ihren Rasenflächen und sanitären Anlagen verbrauchen Sportvereine oft hohe Wassermengen. Für den Freiburger Sportverein Blau-Weiß war das Anlass, am eigenen Beispiel zu untersuchen, wie Vereine ihren Verbrauch umweltfreundlicher gestalten können. Ein eigener Brunnen kam wegen dem sinkenden Grundwasserspiegel nicht in Frage, Regenwasser hingegen bot ein großes Potential. Dazu untersuchte das Freiburger Institut für Hydrologie, wie viel Regen überhaupt auf dem Gelände anfällt und ob die Menge ausreicht, um Sportplätze oder Toiletten zu versorgen. Zwar fällt auf einer Dachfläche von etwa 1000 Quadratmetern Regen an und gelangt in eine Zisterne. Um die Spielfelder zu bewässern, reicht dies jedoch bei weitem nicht aus. Nur mehr Dachflächen und größere Zisternen könnten die über 6000 Kubikmeter, die der Verein jährlich benötigt, liefern. Da dies zu kostspielig ist, verwendet der Verein weiterhin das öffentliche Wasser. In den Sommermonaten jedoch sprengt er die Plätze nur noch einmal wöchentlich intensiv anstatt wie bisher täglich . Zu einem ähnlichen Ergebnis kam das Projekt für die sanitären Anlagen. Weil Regenwasser stärker mikrobiologisch belastet ist, eignet es sich nicht für die Duschen. Für die Toiletten würde die Menge ausreichen, allerdings wäre es finanziell nicht lohnend, die Anlagen umzurüsten. Während es sich also im Endeffekt als wenig lohnend herausstellte, Regenwasser in großem Maßstab zu nutzen, spart der Verein jetzt Wasser und Kosten durch seine modernisierten sanitären Anlagen. Sie zeigen besonders den jungen Vereinsmitgliedern, wie man verantwortungsvoll mit Ressourcen umgeht. Beispielhaft ist auch die neue Zisternenanlage, die ungebrauchtes Wasser im Boden versickert und so die Kanalisation entlastet. Mit ihrem umfassenden Ansatz hilft die Studie anderen Vereinen bei ähnlichen Entscheidungen.

ReferNz
Freiburg

Rechenmodell zur Stickstoffprognose

Dass ein Übermaß an Düngemittel dem Grundwasser und dem Klima schadet, ist lange bekannt. Seit den 1970ern nutzen Landwirte den Nitratinformationsdienst NID, um abzuschätzen, wie viel Dünger sie für eine bestimmte Fläche brauchen. Basierend auf Durchschnittswerten aus Bodenproben, ist der NID jedoch nur beschränkt aussagekräftig. Inzwischen ermöglichen die Fortschritte im IT-Bereich exaktere Modelle und Prognosen. Durch Analysen im Wasserschutzgebiet Hausen erarbeitetete die Agentur für Nachhaltige Nutzung von Agrarland (ANNA) zusammen mit Badenova das Rechenmodell ‚RefereNz’. Damit ist es möglich, anhand der analysierten Referenzflächen in Echtzeit vorherzusagen, wie sich die Nitratwerte für eine bestimmte Landparzelle entwickeln. Die Landwirte gaben dafür in eine internetbasierte Plattform unter anderem ein, wie sie ihr Bodenstück bepflanzen, bearbeiten und düngen. Um die Situation zu analysieren, nutzte das System die Modellsoftware Expert-N, die simulierte, wie sich der Stickstoffhaushalt während eines ganzen Jahres entwickelte. Um den Landwirten zu helfen, sich schnell in dem neuen System zurechtzufinden, bezogen die Experten sie von Anfang an in das Projekt mit ein und veranstalteten zusammen mit Vertretern von Behörden, der Wasserwirtschaft und IT-Experten zwei Workshops. Obwohl das Modell zunächst nur für Mais entwickelt wurde, lässt es sich mit den entsprechenden Daten und Analysen leicht auf andere Kulturpflanzen übertragen. Indem es in Zukunft ermöglicht, bedarfsorientiert zu düngen, schützt RefereNz das Grundwasser und mindert Klimagase wie CO2, Lachgas oder Ammoniak, die beim Düngen entstehen.