Zurück zur Übersicht

Einspeisung oder Eigenstrom aus Photovoltaikanlagen

In den vergangenen Jahrzehnten ist die Anzahl der Solaranlagen in Deutschland stetig gestiegen. Wegen der attraktiven Vergütung speisten die Besitzer den Strom bisher überwiegend ins öffentliche Netz ein. In Zukunft jedoch sinken die Einspeisevergütungen, so dass sie dem Strompreis aus dem Netz entsprechen – die so genannte Netzparität – oder sogar darunter liegen. Das macht es einerseits attraktiver, den Strom selbst zu nutzen, andererseits müssen die Betreiber dafür jedoch in Stromspeicher investieren.

Anhand des Freiburger Verteilnetzes untersuchte das Fraunhofer Institut für solare Energiesysteme (ISE) und badenova, wie sich die sogenannte Netzparität auf Netz und Nutzerverhalten auswirkt. Mit Hilfe des geografischen Informationssystems (GIS) der badenova analysierten die Wissenschaftler, welche Anlagen wann und wo wie viel Strom herstellen und ab wann es für die Nutzer wirtschaftlich ist, den Strom selbst zu nutzen. Anschließend erstellten sie verschiedene Szenarien, die die Chancen und Risiken für Nutzer und Netzbetreiber abwägen und prognostizieren, wie sich diese auf Strompreis und Umwelt auswirken.

Mit Hilfe dieser Daten entwickeln die Projektpartner eine Informationskampagne für Anlagenbesitzer. Das Projekt hilft Netzbetreibern und Anlagenbesitzern sich auf einen dezentraleren Strommarkt einzurichten.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Bei kleinskaligen Projekten – von der Erzeugerseite oder von der Verbraucherseite her kleinskalig – ist es aus ökonomischer Sicht schwierig, sich als zusätzlicher Akteur (≠ Verbraucher) zu involvieren, sofern nur unmittelbare wirtschaftliche Gründe für den Endnutzer eine Rolle spielen und eine hohe Verzinsungserwartung vorliegt. Bei großen Verbrauchergruppen (vergleichbar mit >30 Wohneinheiten) und entsprechend größeren Erzeugeranlagen kann eine wirtschaftliches Geschäftsmodell für alle beteiligten Akteursgruppen jedoch erreicht werden.
  • Batteriesysteme sollten im Kontext der Steigerung des Eigenverbrauchs und des Autarkiegrades nicht zu groß dimensioniert werden. Es herrschen Vorbehalte bei Gewerbe- und Industriekunden hinsichtlich des Einsparens durch „Eigenverbrauch“ aufgrund höherer Komplexität des Geschäftsmodells und regulatorisch gefühlter Unsicherheit; „altes“ Modell „Einspeisevergütung pro kWh“ psychologisch gesehen deutlich überzeugender.
  • Stromabsatz an Verbraucher wird durch erste „2kWh-Batteriekapazität“ noch einmal signifikant reduziert im Bezug zu Verbraucher mit PV-Anlage und keinem Batteriesystem. Dies gilt für alle untersuchten Verbrauchergruppen. Werden Abweichungen zum SLP – verursacht durch ein PV-Batteriesystem – mit Ausgleichsenergiepreisen bewertet, so ergeben sich signifikante „Kosten“ pro Haushalt. PV-bereinigte SLPs sind gut geeignet diese angesetzten „Kosten“ wieder zu senken.

Die zentralen Ergebnisse des Projekts finden Sie im Abschlussprojekt.

Projektdaten

Projektnummer 2012-12
Projektart Forschung und Studien
Projektträger Fraunhofer ISE und badenova
Laufzeit Mai 2012 bis April 2016
Zuschuss 95.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Biomasse-Feuerung für die Zukunft fit machen (BioFfit)
Freiburg

Biomasse-Feuerung für die Zukunft fit machen (BioFfit)

Die ambitionierten globalen Klimaschutzziele erfordern Maßnahmen im gesamten Energiesystem, auf zentraler und dezentraler Ebene von der Erzeugung bis zur Anwendung. Holzbetriebene Einzelfeuerungen können dabei einen nennenswerten Beitrag zur Schonung fossiler Ressourcen und Reduktion der Klimagasemissionen leisten. Allerdings liegen deren Feinstaubemissionen brennstoff- und technikbedingt bei jährlich 24.000 Tonnen und überschreiten damit deutlich die Feinstaubemissionen von Pkw und Lkw. Das Ziel des Projekts ist die Erforschung, Entwicklung und Demonstration eines hocheffizienten Partikelabscheiders für den typischen Leistungsbereich von Einzelholzfeuerungsstätten, in Kombination mit passiver, automatischer Reinigung unter dem Einsatz von funktionalen Materialien. Mit Hilfe einer gekoppelten Verbrennungsregelung soll zudem der feuerungstechnische Wirkungsgrad erhöht und die Schadstoffemissionen gesenkt werden und im Zusammenspiel mit dem Partikelabscheider analysiert werden. Durch den Betrieb mit thermoelektrisch erzeugter elektrischer Energie kann der Abscheider und/oder die Verbrennungsregelung zudem fernab von Stromnetzen betrieben werden, oder kann eine wirtschaftliche Alternative zur nachträglichen Installation einer Stromversorgung darstellen. Die Entwicklung zielt auf Neuanlagen genauso wie auf die Nachrüstung des Anlagenbestandes. Erste Erfahrungen und wichtige Erkenntnisse zu den hier ebenfalls verwendeten Thermoelektrischen Generatoren, konnte das Fraunhofer IPM bereits in einem vorangegangenen Innovationsfonds Projekt , im Kontext eines anderen Anwendungsfalls, gewinnen.

Gülleanwendung auf Grünland: Verminderung gasförmiger und gelöster Stickstoffverluste durch Zusatz pyrogener Pflanzenkohle zum Güllelager
Merzhausen

Biokohle gegen Stickstoffverluste in der Gülledüngung

Gülle ist ein altbewährtes Düngemittel. Beim Austragen von Gülle wie auch von mineralischen Düngern lösen sich jedoch Stickstoffverbindungen. Ammoniak oder Nitrat sickern ins Grundwasser; Lachgas trägt zur Klimaerwärmung bei. Verschiedene Ansätze bekämpfen dieses Problem seit Jahren und haben schon wesentlich dazu beigetragen, die Gülledüngung effizienter und nachhaltiger zu machen. Der Einsatz von Pflanzenkohle aus Pyrolyseanlagen bietet einen weiteren innovativen Baustein, um Stickstoffemissionen zu vermindern. Pyrolyseöfen wandeln bei hoher Hitze Biomasse in Verbrennungsgas und Biokohle um. Zum Einsatz kommt vor allem Material, das anderweitig kaum verwertbar ist. Ein Innovationsfondsprojekt aus dem Jahr 2011 beispielsweise nutzt eine mobile Pyrolyseanlage, um Biomasse aus Rebstockrodung direkt am Weinberg zu verkohlen. Die so gewonnene Kohle reduziert das Volumen der eingesetzten Biomasse drastisch, lässt sich somit leicht transportieren und ist vielseitig einsetzbar. Besonders in der Landwirtschaft zeigt die Biokohle ihr Potential: In den Boden eingearbeitet, speichert sie Wasser und Nährstoffe und wirkt als Kohlenstoffsenke. Aus Praxisberichten ist bekannt, dass im Boden eingearbeitete Biokohle auch Stickstoffemissionen vermindert. Wie genau die Biokohle die Stickstoffverbindungen bindet und den Nitratstoffwechsel verändert ist noch wenig bekannt. Am Mathislehof in Buchenbach erforschten Wissenschaftler vom Institut für Bodenkunde der Universität Freiburg und einer unabhängigen Agentur nun, inwiefern Biokohle Stickstoffemissionen reduziert. Dafür stellten die Forscher am Mathislehof, einem Mutterkuhbetrieb mit Weidewirtschaft, mehrere Versuchsbehälter auf. Die Fässer enthielten Gülle angereichert mit Biokohle in unterschiedlichen Konzentrationen. In regelmäßigen Abständen maßen die Forscher, welche Mengen an Stickstoffverbindungen, unter anderem Ammoniak und Lachgas, aus den Fässern entweichen. Im Frühjahr brachte der Mathieslehof diese verschiedenen Güllegemische mehrmals auf Versuchsflächen aus. Auf diesen Gebieten maßen die Forscher dann über ein Jahr hinweg die gasförmigen und flüssigen Stickstoffemissionen. Das einjährige Projekt maß außerdem, wie lange die Biokohle im Boden verbleibt, ob sie in Hanglagen stark auswäscht und wie sie sich auf das Ökosystem des Weidelandes auswirkt. Das Projekt erforschte damit ein Verfahren, das mit minimalem Aufwand Gülledüngung effizienter und gleichzeitig klimafreundlicher macht. Biokohle verwertet klimaneutral landwirtschaftliche Reststoffe und macht die Nährstoffe der Gülle für Pflanzen besser verfügbar. Weil die Biokohle Ammoniak und andere Geruchsstoffe bindet, nimmt auch der typische Geruch ab und macht so die Gülleausbringung gesellschaftlich akzeptabler. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Aufgrund einer Befragung mit Blindgeruchsproben zeigte sich, dass acht Gramm Kohle pro Liter Gülle ausreichend sind, um eine Geruchsminderung um 40 Prozent zu erzeugen Die Kohlen erwiesen sich in diversen Biotests gut verträglich für die Umwelt und Lebenswelt des Bodens. Für Regenwürmer wirkte Gülle sogar anziehender, wenn diese mit Kohle behandelt worden war Keine messbaren Unterschiede in der Ausgasung von Ammoniak oder Lachgas. Auch nach Gülleausbringung auf Grünland war die N-Freisetzung gleich, ob gasförmig oder flüssig, hier einschließlich Nitrat und Ammonium. Sehr geringe Kohlemengen im ersten Anwendungsjahr könnten die Ursache fehlender Unterschiede sein. Für die beiden verwendeten Pflazenkohlen wurden Unterschiede in ihrer Wirkungsstärke festgestellt. Inwiefern diese jedoch bestimmt werden von Parametern der Herstellungsweise oder Biomassequelle ist aufgrund der vorliegenden Daten nicht ersichtlich The main results were as follows In olfactory tests, however, significant effects were visible in the presence of biochar. Due to blind tests and interviews only 8 g biochar per liter slurry were necessary to reduce the odor by 40 percent. In various bioassays the biochars proved to be without consequences for the soil environment. For earthworms cattle manure seemed even more attractive if it was treated with bochar before. Measurable differences in the emission of ammonia and nitrous oxide were undetectable. Similarly, no effect on the N-release (gaseous or liquid) emerged after slurry spreading on grassland, here including nitrate and ammonium. The lack of differences might be due to very small amounts of biochar in the first year of application (0,08 an 0,4 t/ha). The two biochars displayed different effects during several assays. But determining the criteria responsible for these differences (either parameters of manufacture or biomass source) is not apparent from the available data.

Energienetzmanagement dezentraler, wärmegeführter BHKW
Offenburg

Ein intelligentes Netz für BHKW

Wenn mehr und mehr dezentrale Wind-, Wasser- und Photovoltaikanlagen Strom ins Netz einspeisen, müssen Netzbetreiber flexibel reagieren, um Überlastungen oder Engpässe zu verhindern. So genannte demand-response Systeme nutzen dafür zu- und abschaltbare Elemente wie beispielsweise BHKWs. Für die Betreiber von BHKWs jedoch ist es am wirtschaftlichsten, wenn ihre Anlagen durchgehend laufen. In drei Teilprojekten entwickelte das Institut für Energiesystemtechnik der Hochschule Offenburg ein Energienetzmanagement, das beide Ziele vereint. Dazu erstellten sie ein Netzmanagement am Geflügelhof Zapf in Gengenbach. Dort stellte der Lebensmittelbetrieb in einem weiteren Innovationsfondprojekt seine Energieversorgung auf drei Holzvergasern um. Die Hochschule baute zunächst ein Messsystem auf, erfasste, wie viel Energie die Produktion überhaupt benötigt und modellierte mit Hilfe spezieller Software ein Netz, das flexibel auf Strom- und Wärmebedarf reagieren kann. Im Testbetrieb entstand so ein Modell, das die Wissenschaftler anschließend auf andere Kleinnetze anwenden können. Für die Stadt Offenburg erstellten die Wissenschaftler ein weiteres System, um das städtische Teilnetz aus fünf BHKWs und kommunalem Gebäudepool wirtschaftlich und ressourcenschonend zu betreiben. Über die bereits vorhandene Gebäudeautomation wurde gemessen, wie viel Energie aus BHKW und Netzstrom einfloss und bezogen auch Wetterprognosen und mögliche Speicher mit ein. Ziel war es, durch eine zentrale Steuerung die BHKWs möglichst ununterbrochen zu betreiben und ihre Energie im Netz optimal zu nutzen. Bei Bedarf könnten solche intelligenten Kleinnetze in Zukunft in größere Netzverbunde integriert werden ohne die lokalen Betreiber einzuschränken. Kombiniert mit den Ergebnissen aus den beiden anderen Teilprojekten entwickelte die Hochschule schließlich ein eigenes Stromnetz für Lehre und Forschung, mit verschiedenen Energiequellen sowie thermischen und chemischen Speichern. Die Hochschule baute so ihre Kompetenzen in der Systemanalyse aus und zeigt neue Wege auf, um Energienetze optimal zu betreiben. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Im Nachhinein muß das Projekt als sehr ambitiös eingestuft werden, konnte jedoch nach mehreren Verlängerungen erfolgreich abgeschlossen werden. Dabei wurde der notwendige Umfang den ein komplexes Energienetzmanagement fordert sehr deutlich. Dies gilt insbesondere dann, wenn mehrere innovative Komponenten und Verfahren zum Einsatz kommen. Schritte zur Optimierung der automations- und energiemeßtechnischen Ausrüstung wurden unternommen, um Labornetze mit Schnittstellen zu versehen, die Smart Grid – Funktionen erst ermöglichen. Es zeigte sich, dass viele verfügbare Produkte langfristig nicht für den Betrieb in flexiblen Netzen geeignet sind. Den Partnern stehen nun gut ausgerüstete Reallabore zur Verfügung, um Microgrids im Sinne von Smart Grids zu vernetzen und vernetzt zu untersuchen. Mit Weiterentwicklungen bei modellbasierten Prognosen und Algorithmen wurden wichtige Schritte zur Validierung gemacht. Die Arbeit werden fortgesetzt und sind Teil aktueller Forschungsaufgaben.