Zurück zur Übersicht

Kälte aus Abwärme

Um ihre Ladung zu kühlen, brauchen LKW im Regionalverkehr pro Stunde circa zwei bis drei Liter Diesel. Die Idee für eine innovative Kühlanlage der Sortech AG zielte darauf ab, den Verbrauch um 40 Prozent zu senken. Weil sie die Wärme aus dem Kühlwasser nutzt, benötigt das System kaum zusätzliche Energie und verbessert, integriert in die konventionelle Anlage, deren Wirkungsgrad. Ursprünglich vom Fraunhofer Institut für Solare Energiesysteme für thermische Solaranlagen entwickelt, verstärkt bei diesem innovativen Prinzip eine Sorptionspumpe den Kältekreislauf. Dazu wird der herkömmlichen Kälteanlage das innovative System vorgeschaltet. Wenn heiße Luft aus der Kühlanlage über das synthetische Granulat der Pumpe fließt, sinkt dessen Temperatur stark ab und gefriert eine Wassersubstanz zu Eis. Dieses Eis wiederum erzeugt kalte Luft, die die Anlage zum Kühlen verwendet.

Weil sie ihren Prototyp wegen der wirtschaftlichen Rahmenbedingungen nicht in LKW testen konnten, entwickelte Sortech ein verbessertes, kompakteres Modell, das als stationäre Klimaanlage dient. Seit 2006 kühlt eines davon im Praxistest den Seminarraum der Gewerbeakademie Freiburg.

Mehr Informationen auf der Homepage von SorTech.

Projektdaten

Projektnummer 2003-04
Projektart Forschung und Studien
Projektträger SorTech AG
Laufzeit Januar 2003 bis Juni 2006
Zuschuss 250.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Einspeisung von PV-Strom ins Straßenbahnnetz in Kombination mit einem Batteriespeicher zur Maximierung der Anlagengröße für einen ökonomischen Betrieb und größtmöglichen Beitrag zum Klimaschutz
Freiburg

Das VAG-Netz als Speicher für PV-Strom

Das klimaneutrale Freiburger Fußballstadion wird nach Fertigstellung mit Strom aus Photovoltaikanlagen versorgt. Dabei mußten die Planer den stark schwankenden Energiebedarf – hoch an Spieltagen, niedrig in den Wochen dazwischen – in Betracht ziehen. Deshalb wurden beim Stadion zwei PV-Anlagen vorgesehen: eine kleine zur Deckung des Grundbedarfs und eine größere zur Deckung der Spitzenlasten. Kann der Strom nicht vom Stadion genutzt werden, wird er ins Stromnetz eingespeist. Wirtschaftlich ist das oft wenig sinnvoll, denn wenn auch andere Erzeuger erneuerbarer Energien viel Strom einspeisen, z. b. in sonnigen Sommermonaten, erhält der Betreiber nur geringe oder gar keine Erlöse. Daher analysierte eine Machbarkeitsstudie der badenova WärmePlus und des Fraunhofer ISE eine alternative Einspeisung, nämlich ins Straßenbahnnetz der VAG. Das Projektziel war es, herauszufinden, ob daraus eine Gewinnsituation für beide Seiten entstehen kann: Die VAG erhält Strom zu günstigeren Konditionen; die WärmePlus kann den PV-Strom direkt,wirtschaftlich und lokal sinnvoll einsetzen. Zentraler Bestandteil eines solchen Systems ist ein Batteriespeicher, der flexibel zwischen Angebot und Nachfrage puffern kann. Ebenso könnte das Speichersystem auch die Energieeffizienz der VAG verbessern. Bisher gehen bis zu 950.000 kWh Bremsenergie pro Jahr verloren. Zwar sind die Straßenbahnen der VAG rückspeisefähig, d. h. sie können die beim Bremsen erzeugte Energie ans Straßenbahnnetz abgeben, das funktioniert aber nur, wenn sich gerade eine anfahrende oder beschleunigende Straßenbahn in unmittelbarer Nähe befindet, um die Energie aufzunehmen. Ist dies nicht der Fall, z. b. an Ausläuferstrecken oder Endhaltestellen, wandeln die Straßenbahnen die Bremsenergie in Verlustwärme um. Ein Batteriespeicher könnte diesen überschüssigen Strom aufnehmen. In einem früheren Innovationsfondsprojekt hatte die VAG bereits einen kleineren Schwungradspeicher an einer Endhaltestelle erprobt. Im jetzigen Projekt wurde von den Experten der WärmePlus und dem Fraunhofer ISE ein komplexeres Speichersystem angedacht, dass sowohl PV-Strom als auch Bremsenergie aufnehmen und gezielt und erlösoptimiert entweder über einen Wechselrichter an das öffentliche Netz oder direkt als Gleichstrom in das Straßenbahnnetz abgibt. Dazu verglichen sie verschiedene auf dem Markt erhältliche Speichermodelle, und analysierten, wie groß ein solcher Speicher ausgelegt sein muss, um sowohl wirtschaftlich wie effizient zu sein. Mit dem an die lokale Infrastruktur angepassten Konzept zeigte das Projekt neue Wege auf, um Energieversorgung und Energiewende ökologisch und ökonomisch sinnvoll zu gestalten. Darstellung drei wesentlicher Erkenntnisse aus dem Projekt: Große Herausforderung bei der Auslegung des Gesamtsystems ist in diesem Fall die sich stark ändernde Energiebezugsleistung beim Anfahren der Straßenbahnen. Darin unterscheidet sich dieser Anwendung eines PV-Batterie-Speichersystems stark von herkömmlichen Einsatzgebieten. Eben dies führt auch dazu, dass sehr anwendungsspezifische Batteriespeichertechnik eingesetzt werden muss, um das Straßenbahnnetz sinnvoll mit PV-Strom zu speisen. Diese ist wiederum oft teuer, da sie bisher nicht im Massenmarkt eingesetzt wird. Die aktuellen energiewirtschaftlichen Rahmenbedingungen erschweren den Ansatz eines multifunktionalen Batteriespeichers, wodurch viele Batteriespeicher mit nur einem Anwendungsfall nicht wirtschaftlich betrieben werden können. Bei weiteren Anwendungsfällen neben der PV-Stromzwischenspeicherung, wäre eine Wirtschaftlichkeit auch in diesem Fall leichter zu erzielen. Für eine bessere Wirtschaftlichkeit ist auf möglichst kurze Kabelstrecken und ein geeigneter Netzanschlusspunkt zu achten, da dadurch die Investitionskosten reduziert werden können. In diesem Fall waren die Kabelwege im Verhältnis zur PV-Leistung wesentlich zu hoch.

Studie zum Einsatz neuer Einsatzstoffe durch eine Hydrolyse-Vorstufe
Neuried

Mehr Biogas für Neuried

Viele Biomassematerialien eignen sich momentan noch kaum für Biogasanlagen. Dazu zählen besonders Rest- und Abfallstoffe, die in der Landwirtschaft oder der Nahrungsmittelproduktion anfallen sowie Grünschnitte aus der Landschaftspflege. Im Hybridkraftwerk Neuried testete eine der beiden parallel laufenden Anlagen, ob zum Beispiel eine Hydrolysestufe – d. h. die Aufspaltung durch Reaktion mit Wasser – die Stoffe ertragreicher macht. Bisher lief in beiden Anlagen eine konventionelle Trockenfermentation ab, welche die anfallende Flüssigkeit dem Gärgut immer wieder zuführt und durch die darin enthaltenen Bakterien den Gärprozess aufrechterhält. Innovativ war die Studie weil sie verschiedene Methoden in einer noch unerprobten Kombination testete. Dabei wird die Biomasse verkleinert, anschließend versetzt der Mischer diese mit bakterienhaltiger Gärflüssigkeit und startet damit den Gärprozess. Ein so genannter Inlinezerkleinerer homogenisierte die Masse danach noch einmal, um sie pumpfähig zu machen. Dabei anfallendes Biogas saugt die Anlage ab. Die Stoffe liegen nun in zerkleinerter Form vor und bieteten den Bakterien eine größere Angriffsfläche, was deren Arbeit vereinfacht. Weil nur einer der beiden Neurieder Anlagen mit dem neuen Verfahren arbeitete, konnten die Forscher dessen Ergebnisse direkt mit der konventionellen Fermentation vergleichen. Erweist sich das Verfahren als erfolgreich und wirtschaftlich, bietet es sich für viele der 4000 Biogasanlagen in Deutschland an, die dadurch mehr umweltfreundliches Biogas produzieren könnten.

Wärmerückgewinnung und Wasserrecycling aus Grauwasser
Offenburg

Wenn Abwasser zum Rohstoff wird

Der Durchschnittsdeutsche verbraucht 128 Liter Wasser am Tag, davon entfallen etwa 46 Liter auf die Körperpflege, also beispielsweise Baden oder Duschen. Energieintensiv erhitzt ist dieses nur leicht verschmutzte Grauwasser zu schade um ungenutzt als Abwasser in die Kanalisation zu fließen. Bisherige Wasserrecyclinganlagen nutzen aber bisher entweder nur dessen Restwärme, um damit Brauchwasser zu erhitzen oder reinigen das Grauwasser, um es beispielsweise für Waschmaschine und Toilettenspülung wieder zu verwenden. Seit 2006 entwickelte die Firma Pontos ein Gesamtsystem, das anschließend in einem Studentenwohnheim im Freiburger Stadtteil Vauban eine zweijährige Testphase durchlief. Das Fraunhofer Institut für System- und Innovationsforschung in Karlsruhe begleitete den Testbetrieb. Dabei durchläuft das warme Grauwasser einen speziellen Wärmetauscher, in dem es seine Wärme an das zu erwärmende Trinkwasser abgibt. Um das biologisch-physikalisch Wasser anschließend aufzubereiten, nutzte die Firma Pontos das System AquaCycle. Die kompakte, einfach zu bedienende Anlage filtert das Grauwasser vor und reinigt es zweifach durch Biokulturen, um es schließlich mit UV-Strahlen zu hygienisieren. Nach dem Wärmetauscher hat das Wasser noch etwa 10 Grad, was die biologischen Abbauprozesse erschwert, die bisher mit 20 bis 30 Grad abliefen. Obwohl die niedrigere Temperatur die Biokulturen weniger leistungsfähig macht, stellten die Experten fest, dass die Anlage immer noch effizient genug läuft. Wasserfiltration und Wärmerückgewinnung zu kombinieren bietet mehrere Vorteile: Weil die Bewohner weniger Trinkwasser verbrauchen und Abwasser in die Kanalisation leiten, sinkt die Wasserrechnung. Außerdem braucht die die Heizung weniger Energie um das schon vorgewärmte Trinkwasser zu erhitzen. Das Trinkwasser zu erwärmen macht bei einem Niedrigenergiehaus 40 Prozent des Energiebedarfs aus, bei einem Passivhaus sogar mehr als die Hälfte. Für das Freiburger Wohnheim sank der Energiebedarf für die Warmwasserbereitung um 20 Prozent. Außerdem ersetzte das Grauwasser das Trinkwasser für die Toilettenspülung fast vollständig.