Zurück zur Übersicht

Neue Verwertungswege für Asche aus Biomasseverbrennungsanlagen

Beim Verbrennen von Biomasse zur Wärmeerzeugung entsteht Asche, die teilweise mit Schwermetallen belastet ist. Besonders beim Einsatz von Altholz und nicht naturbelassenen Hölzern ist der Anteil an belasteten Aschen hoch. Bisher müssen Betreiber diese Asche in speziellen Deponien kostenpflichtig entsorgen. Nun erforschte das Projekt der Hochschule Offenburg, inwiefern sich die Asche aus Biomasseöfen als kostengünstige Ersatzstoffe in der Herstellung von Baumaterialien wie Polymerbeton oder Schaumglas eignet. Dieses Verfahren bietet zwei Vorteile: Die Aschen ersetzen Sand, der bisher in der Betonherstellung eingesetzt wird und bei dessen Förderung und Weiterverarbeitung CO2 freigesetzt wird. Außerdem sind die Schwermetalle aus den Aschen in den Baustoffen gebunden und so nicht mehr umweltgefährdend. Während gering belastete Asche schon in der Betonherstellung im Einsatz ist, erprobten die Wissenschaftler diesen Weg erstmals mit problematischen hochbelasteten Aschen.

Im Projekt analysierten die Wissenschaftler in einem ersten Schritt die Konsistenz und Bestandteile verschiedener Aschen, insbesondere ihre Belastung mit Schwermetallen und das Gefahrenpotential für Mensch und Umwelt. Anschließend untersuchten sie, wie die Zugabe von Aschen die Materialeigenschaften von Polymerbeton, Geopolymer, Sinterleichtbaustoffen und Schaumglas beeinflusst. Für die zwei erfolgreichsten Verwertungswege aus diesen vier Varianten berechneten die Forscher anschließend Produktionskosten und Wirtschaftlichkeit im Vergleich mit konventionell hergestellten Produkten. Auch die langfristigen Umweltauswirkungen durch den Einbau der Aschen wurden untersucht. Zusammen mit Partnern aus der Wirtschaft werden nun zwei Verwertungswege im größerem Maßstab angedacht und Vermarktungsmöglichkeiten eroriert. Das Pilotprojekt zeigte damit neue Wege auf, um Biomasseasche dezentral zu verwerten.

Mehr Informationen auf dem Flyer und der Webseite der AG Biomasse der HS Offenburg.

Darstellung drei wesentlicher Erkenntnisse aus dem Projekt:

1.Der Rohstoff Sand kann prinzipiell in Schaumglas, Leichtbeton, Sinterleichtbaustoffen und in Polymerbeton durch Aschen aus der Biomassefeuerung substituiert werden. Dabei werden die Baustoffanforderungen (Druckfestigkeit, Dichte, Aushärtezeit) erreicht.

2.Werden Aschen mit geringen Schwermetallgehalten als Zuschlagstoff bei der Herstellung von Recyclingbaustoffen verwendet, können die Produkte ohne Einschränkung eingesetzt werden.

3.Die Eignung der Asche als Zuschlagstoff für einzelne Verwertungswege hängt von der Feuerungsanlage, der eingesetzten Biomasse, der Art der Aschen und dem Schwermetallgehalt der Asche ab.

Projektdaten

Projektnummer 2015-13
Projektart Forschung und Studien
Projektträger Hochschule Offenburg
Laufzeit 2016 bis September 2019
Zuschuss 96.600

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Wassergestützte Latentwärmespeicher in Putz- und Dünnestrichsystemen
Freiburg

Innovativer Putz reguliert die Gebäudetemperatur

Während unsanierte Altbauten immer noch zuviel Energie für Heizen und Kühlen verbrauchen, versucht man Neubauten inzwischen thermisch träge zu errichten. Das heißt, dass solche Gebäude nur langsam auf die Umgebungstemperatur reagieren. Sie heizen sich im Sommer also nicht so schnell auf oder können im Winter gespeicherte Wärme über einen längeren Zeitraum abgeben. Dabei helfen neben einer guten Isolierung spezielle, innovative Wärmespeichermaterialien. Zusammen mit dem Fraunhofer Institut für solare Energiesysteme (ISE) untersuchte die Maxit Deutschland GmbH, wie sich mikroverkapseltes Paraffin für diesen Zweck eignet. Die Paraffinkugeln gehören zu den sogenannten Phasenwechselmaterial, weil sie, umhüllt von einer Mikrokapsel, je nach Temperatur ihren Zustand von flüssig zu fest ändern. Wenn die Kugeln schmelzen, nehmen sie Wärme aus der Umgebung auf. Wenn es kälter wird und das Paraffin wieder erstarrt, gibt es die Wärme wieder frei und kann so Temperaturschwankungen abschwächen. Die Projektbeteiligten testeten, in welchem Verhältnis man die Paraffinkugeln Estrich zumischen kann. Um herauszufinden, wann Fließfähigkeit und Materialeigenschaft am besten sind, erprobten Maxit und ISE verschiedene Estriche unter unterschiedlichen Bedingungen. Obwohl das Konzept funktioniert, erwiesen sich die Materialkosten letztendlich als noch zu hoch, so dass Maxit vorerst kein System mit mikroverkapseltem Paraffin auf den Markt bringt.

ARTHYMES Archaea Transform Hydrogen to Methane for Energy Storage
Offenburg

Methanisierung von Wasserstoff als Speicher für Überschussenergie

Wind- und Sonnenenergie stellen einen wachsenden Anteil am deutschen Strommarkt. Beide Energiequellen sind jedoch stark wetterabhängig, so dass die Einspeisung ins Stromnetz zwischen Überschüssen und Unterversorgung schwankt. Stromspeicher können diese Schwankungen ausgleichen, sind aber noch nicht flächendeckend vorhanden. Bisher kamen vor allem Pumpspeicherkraftwerke zum Einsatz, die aber allein den Speicherbedarf nicht decken können. Auch Elektroautos, zeigt ein vorheriges Innovationsfondsprojekt, eignen sich prinzipiell als Speicher für überschüssige Energie. Angesichts ihres nur langsam wachsenden Marktanteils sind auch sie bisher nicht als Stromspeicher im großen Maßstab geeignet. Das Erdgasnetz hingegen bietet eine Speicherkapazität von 200 TWh, ein Vielfaches der momentan benötigten etwa 15 TWh. Um elektrische Energie ins Gasnetz einzuspeisen, wird diese genutzt, um in einem elektrolytischen Prozess zuerst aus Wasser Wasserstoff zu gewinnen. Anschließend wird der Wasserstoff biologisch in Methan umgewandelt. Diese Technik ist jedoch bisher nur im Labormaßstab erprobt; die einzelnen Faktoren und beteiligten Mikroorganismen sind noch kaum erforscht. Das Projekt der Hochschule Offenburg untersuchte diesen Prozess der biologischen Methanisierung ausführlich und analysierte, inwiefern sich Wasserstoff als Cosubstrat für Biogasanlagen eignet. Biogas entsteht in einer anaeroben Fütterungskette, in der sich aus Substrat – also Energiepflanzen, Grünschnitt oder Abfallstoffen – zuerst Kohlendioxid und Wasserstoff und schließlich Methan bildet. Rohbiogas enthält allerdings immer noch 30 bis 50 Prozent CO2, das aufwändig ausgefiltert werden muss, bevor das Biogas ins Erdgasnetz eingespeist werden kann. Durch Zugabe von zusätzlichem Wasserstoff aus Überschussstrom zum Gärprozess kann auch das restliche CO2 zu Methan umgewandelt werden. Um dieses bisher nur im Labormaßstab erprobtes Verfahren der in situ-Methanisierung zu optimieren, erforschten die Offenburger Wissenschaftler verschiedene Verfahren, um den Wasserstoff in den Vergasungsprozess einzuschleusen, so dass er optimal durch die beteiligten Mikroorganismen, den Archaeen, verwertet wird, ohne diese zu beschädigen. Mit ihren weitreichenden Erfahrungen in der Biogasforschung analysierten die Forscher der Hochschule verfahrenstechnische, mikrobiologische, chemische und physikalische Aspekte der Methanisierung. Die Hochschule setzt sich hierbei die Entwicklung eines Moduls zum Ziel, dass nach Maßstabsübertrag in etwas 7000 deutschen Biogasanlagen integriert werden könnte. Das Projekt trägt so zur Lösung zweier Problemfelder bei: Zum einen bietet es große Speicherkapazitäten für Überschussenergie, zum anderen macht es Biogasanlagen ökologisch und ökonomisch effizienter, indem es den Substratbedarf reduziert. Weil das mit Methan behandelte Biogas kaum noch CO2 enthält, entfällt auch die aufwändige Aufbereitung, bevor das Gas ins Erdgasnetz eingespeist werden kann. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Durch Einbringen von Wasserstoff über blasenfreie Membranbegasung in Biogasanlagen kann ohne pH-Regulation die Methankonzentration im Rohbiogas auf 80-90 % gesteigert werden. Dabei steigt der pH-Wert an, wird aber noch von der Mikrobiologie toleriert. Die Wasserstoffkonzentration im Produktgas liegt bei wenigen Prozent. Der eingespeiste Wasserstoff wird nahezu vollständig umgesetzt. Methankonzentrationen von nahezu 100 % werden ohne pH-Regulation nur temporär erreicht, da der durch den CO2-Verbrauch auftretende extreme pH-Wert zu Schädigungen der Mikrobiologie führt. Ein Langzeitbetrieb mit solch hohen Methankonzentrationen ist jedoch bei pH-Regulation/Pufferung denkbar. Neben hochgasdurchlässigen, relativ teuren Membranen scheinen unter Berücksichtigung der Grenzwerte für die blasenfreie Begasung auch preisgünstigere Membranmaterialien geeignet zu sein. Die im Projekt getesteten Membranen zeigten kaum Biofilmbildung, so dass sie bei ausreichender Stabilität vermutlich auch längerfristig eingesetzt werden können.