Zurück zur Übersicht

Wie lassen sich Seen effektiver belüften?

Der Restaurierung von stark eutrophierten Seen (insbesondere Baggerseen, die als Bade-/Freizeitseen genutzt werden) und deren Wasserqualität kommt eine zunehmende Bedeutung zu. Das Projekt ist eine Machbarkeitsstudie zur Erprobung der Anwendung von Singulett-Sauerstoff im Rahmen von Seebelüftungsmaßnahmen am Beispiel des Flückiger Sees und des Waltershofener Sees in Freiburg. Singulett-Sauerstoff ist eine Form eines angeregten Sauerstoff-Moleküls, es ist sehr reaktiv und giftig. Es kann (photo-) chemisch hergestellt werden.

Die Kombination von Singulett-Sauerstoff und der Technik der Tiefenbelüftung von Seen ist ein innovativer Ansatz zur Sanierung von stark eutrophierten Seen. Wenn die Studie eine wirkungsvollere und zugleich kostengünstigere Sanierungsmöglichkeit aufzeigt, leistet sie einen Beitrag zum Gewässerschutz, aber auch zum Schutz des Grundwassers (Baggerseen sind sog. „Grundwasserblänken“ und stehen in intensivem Wasseraustausch mit dem Grundwasserkörper selbst).

Projektdaten

Projektnummer 2004-08
Projektart Forschung und Studien
Projektträger Limnologie Büro Hoehn, Freiburg
Laufzeit Mai 2004 bis September 2005
Zuschuss 60.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Freiland- und Laboruntersuchungen zum Verhalten ausgewählter Sulfonylharnstoff-Herbizide im Boden
Freiburg

Herbizide und Grundwasser

Seit den 1980er Jahren verwendet die Landwirtschaft immer mehr Herbizide auf Basis von Sulfonylharnstoffen (SHS). Weil SHS für Säugetiere nur gering toxisch sind und schon bei niedrigen Mengen effizient wirken, sind SHS beim Maisanbau mittlerweile das zweitwichtigste Pflanzenschutzmittel. Bisher wusste man überwiegend aus Modellversuchen, wie sich die Stoffe im Boden verhalten. Nachdem neuere Untersuchungen SHS im Trink- und Oberflächenwasser nachwiesen, untersuchte badenova zusammen mit dem Technologiezentrum Wasser in Karlsruhe, ob und wie stark sechs SHS-Stoffe ins Grundwasser auswaschen. Dazu untersuchten die Forscher neben den Laborversuchen eine Testfläche bei Bruchsal sowie zwei weitere in den Wasserschutzgebieten Hausen und Donauried bei Langenau. Nach Projektende 2008 stand fest, dass die Herbizide in sehr unterschiedlichen Mengen ins Grundwasser gelangen, wobei die Standortbedingungen eine bedeutende Rolle spielen. Besonders nach Starkregen ist es möglich, dass sich mittlere Konzentrationen an SHS im Grundwasser finden. Zusätzlich wiesen die Forscher darauf hin, dass sich die Stoffe im Boden anreichern und so in Zukunft für stärkere Konzentrationen sorgen könnten. Daher empfehlen die Wissenschaftler, dass Behörden und Wasserversorger künftig vier der untersuchten Stoffe in ihrem Grund- und Rohwassermonitoring überwachen. Besonders für die Oberrheinregion, wo Mais bereits knapp ein Viertel der Anbauflächen ausmacht, tragen die Ergebnisse dazu bei, dass die Landwirte SHS-Herbizide bewusster und umweltfreundlicher einsetzen können.

	Machbarkeitsstudie zum Einsatz einer innovativen Technologie zur Bioenergieerzeugung mittels Pyrolyse mit niedrigen Staubemissionen und hohem CO2-Reduktionspotential
Freiburg

Studie zur Pyrolyse von Biomasse

Anders als beim Vergasen oder Verbrennen von Biomasse benötigt die Pyrolyse (auch Verschwelung genannt) keinen Sauerstoff, um Stoffe zu zersetzen. Deshalb nennt man dieses Verfahren, dessen Name sich vom griechischen ‚pyr’ für Feuer und ‚lysis’ für Auflösung ableitet, auch eine thermo-chemische Spaltung. Alleine durch das Erhitzen verschwelt der eingesetzte Stoff zu einer kohleartigen Masse. Das macht das Verfahren interessant, um biogene Reststoffe, wie sie in der Landwirtschaft oder der Lebensmittelproduktion anfallen, energetisch zu verwerten. Bei vielen Stoffen ist noch nicht bekannt, ob sie sich für eine Pyrolyse eignen. Ein Freiburger Projektteam testet das Pyrolyseverfahren für Kleegrasmischungen und für Okara, einem wässrigen Nebenprodukt der Tofuproduktion. Während man in Asien Okara in Suppen oder Gebäck verwendet, entsorgen hiesige Produzenten die Masse überwiegend als Abfallstoff oder verkaufen sie als Viehfutter. Wegen des hohen Wassergehaltes war es bisher schwierig, den Restenergiegehalt von Okara zu nutzen, ohne vorher viel Energie in die Trocknung zu stecken. Mit einer Pilotanlage testet das Projekt deshalb, ob sich Okara und Kleegras für Pyrolyseverfahren nutzen lassen. Hierbei wird die Biomasse im luftdichten Reaktor zu Synthesegas und Biokohle umgesetzt, die als konzentrierter Kohlenstoff (C) anfällt. In einem zweiten Reaktor verbrennt das Synthesegas emissionsarm zur Wärmenutzung. Biokohle – d. h. verkohlte Biomasse – zeichnet sich durch zwei Eigenschaften aus: In den Boden eingearbeitet verbessert sie dessen Fähigkeit, Wasser und Nährstoffe zu speichern. Unter dem Namen Terra Preta ist dieses Prinzip aus Südamerika bekannt, wo die Ureinwohner in präkolumbianischer Zeit so die Erträge auf den nährstoffarmen Böden verbesserten. Das Projekt untersucht, wie sich Biokohle aus Okara auf das Pflanzenwachstum und Stoffflüsse auswirkt, ob sie eventuell Schadstoffe enthält und ob sie sich überhaupt für hiesige Böden eignet. Noch eine zweite Eigenschaft macht die Biokohle zu einem besonderen Stoff. Sie speichert einen Großteil des Kohlenstoffes, einem Hauptbestandteil von Biomasse. Anders als bei fossilen Brennstoffen, deren Nutzung große Mengen an CO2 freisetzt oder beim Verbrennen von Biomasse bzw. Biogas, bei dem die ausgestoßene Menge an CO2 dem entspricht, was die Pflanzen während ihres Wachstums aufgenommen haben, hat die Pyrolyse eine negative CO2-Bilanz. Mit dieser sogenannten C-Sequestrierung bindet man durch die langsame Zerfallsrate der Biokohle den klimaschädlichen Stoff langfristig im Boden. Damit hat die Pyrolyse das Potential, bisher unbrauchbare oder gemischte biogene Resstoffe zu nutzen und mit dem Düngepotential der Biokohle die CO2-Bilanz verschiedenster Produktionskreisläufe zu verbessern. Ein weiteres Projekt

Unsichtbare Stromverbraucher in kommunalen Gebäuden erkennen
Lörrach und Weil am Rhein

Unsichtbaren Stromverbrauch erkennen

Die Städte Lörrach und Weil am Rhein versuchen schon seit längerem, den städtischen Energieverbrauch zu reduzieren und haben dafür beispielsweise in effizientere Heiz- und Leuchtsysteme investiert. Entgegen aller Erwartungen jedoch, ist der Stromverbrauch in den letzten Jahren weiter gestiegen. Die Ursachen hierfür sind mit herkömmlichen Methoden nur schwer zu finden. In den meisten Gebäuden gibt es nur einen einzelnen Stromzähler. Wie viel Strom beispielsweise Kleingeräte wie Computer, Kaffeemaschinen oder Drucker verbrauchen lässt sich nicht feststellen. Gerade um diese Kleingeräte und andere verstecke Verbräuche geht es den Verantwortlichen in Lörrach und Weil am Rhein. An zwei Beispielgebäuden messen die beiden Städte den tatsächlichen Stromverbrauch. Dazu erfassen Experten in einem ersten Schritt alle Geräte, deren Alter und Energieeffizenz und befragen Mitarbeiter, wie sie diese benutzen. Für ein Jahr erfassen in der Folge intelligente, durch ein Softwaresystem verbundene Strommessgeräte, welche Geräte und Gerätegruppen wann wie viel Energie verbrauchen und wie hoch ihr Anteil am Gesamtverbrauch ist. Aus diesen Daten entsteht anschließend eine Strategie, um den Stromverbrauch zu reduzieren. Zeitschaltprogramme sorgen dafür, dass Drucker oder Kaffeeautomaten nicht unnötig in Betrieb sind. Denselben Zweck erfüllt ein sogenannter Standby-Killer, der verhindert, dass Geräte unnötig in diesem Betriebsmodus verbleiben. Die Mitarbeiter lernen in Schulungen, wie sie Computer oder Drucker energieeffizienter einsetzten können und welche Geräte möglicherweise nur einmal pro Abteilung oder Stockwerk notwendig sind. Am Ende steht ein Verfahren, das eingesetzt in anderen kommunalen Gebäuden dazu beitragen kann, dass Städte und Gemeinden ihren Strombedarf senken können und die Entwicklung eines realistischeren Standards über den tatsächlichen Verbrauch in Bürogebäuden.