Zurück zur Übersicht

Ein geschlossener Energiekreislauf für die Deponie Eichelbuck

Während auf der Deponie Eichelbuck im Freiburger Mooswald früher Haushaltsmüll entsorgt wurde, ist die Anlage heute für Grünabfälle aller Art zuständig. Dieser Wandel wirkt sich auch auf die Energieversorgung der Anlage aus, die momentan durch zwei mit Deponiegas betriebene Mikrogasturbinen erfolgt. Deponiegas entsteht beim biologischen und chemischen Abbau von organischem Abfall. Dieser fällt jedoch in unvorbehandelter Form in deutschen Deponien nicht mehr an, so dass die Menge an Deponiegas stetig zurückgeht. Deshalb müssen sich die Deponiebetreiber nach neuen lokalen und umweltfreundlichen Energiequellen umsehen. Grünabfälle, wie sie am Eichelbuck verarbeitet werden, bieten dieses Energiepotential.

Bisher trennte man auf der Anlage Grünabfall in holziges Material für die Zufeuerung in der eigenen Hackschnitzelanlage und erdiges Material, das in der Landwirtschaft ausgebracht wurde. Eine Pyrolyseanlage und eine verbesserte Hackschnitzelanlage sollen in Zukunft die Grünabfälle ökologisch und wirtschaftlich effizienter nutzbar machen. Pyrolyseverfahren wurden schon in mehreren Innovationsfondsprojekten erprobt. Sie eignen sich besonders für Materialien, die nicht auf herkömmliche Weise zu Biogas vergärbar sind. In der Freiburger Anlage sind das beispielsweise Grünschnitt, Pferdemist und diejenigen Holzreste, die sich nicht für Holzhackschnitzel eignen. Im Pyrolyseofen verschwelt die Biomasse unter großer Hitze und ohne Sauerstoffzufuhr zu Verbrennungsgas und Biokohle. Biokohle ist vielseitig einsetzbar und anders als die ursprüngliche Biomasse leicht, kompakt und somit einfach zu transportieren. Beigemengt zum Substrat in Biogasanlagen, erhöht sie die produzierte Gasmenge. Auch der aus Speiseresten auf dem Eichelbuck hergestellte Kompost verbessert mit Biokohle sein Nährstoffprofil. In den Boden eingebracht – direkt oder im angereicherten Kompost oder Gärrest – verbessert Biokohle die Bodenqualität, erhöht den Ertrag und verringert den Bedarf von Kunstdüngern.

Die Abwärme der Pyrolyseanlage trocknet die auf der Anlage produzierten Hackschnitzel. In Zukunft ersetzt ein Hackschnitzel-BHKW eine der Mikrogasturbinen, deren Einsatz durch das schwindende Deponiegas nicht mehr rentabel ist. Die Hackschnitzelanlage verfügt mit einer extern gefeuerten Heißgasturbine über eine innovative, noch wenig eingesetzte Technologie. In der Anlage verbrennen die Hackschnitzel zu Asche und heißem Abgas, das indirekt über einen Wärmetauscher die Zuluft der Turbine erhitzt. Verunreinigtes Rauchgas und saubere Turbinenluft bleiben so getrennt; ein Verfahren das den schnellen Verschleiß durch Abgaspartikel verhindert. Die Hackschnitzelanlage wiederum liefert Abwärme für die Speiseresteaufbereitungsanlage. In einigen Jahren wird auch die zweite Mikrogasturbine durch eine Heißluftturbine ersetzt, die zusätzlich Strom und Wärme aus regenerativen Energien liefert. Angereichert mit Biogas, kann das restliche Deponiegas im BHKW Landwasser verbrannt werden; ein Verfahren das bereits durch ein weiteres Innovationsfondsprojekt erprobt ist.

Pro Jahr spart das Konzept 2.600 Tonnen CO2 ein. Mit dem aufeinander und auf die vorhandenen Abfallstoffe abgestimmten Energiekreislauf zeigt die Deponie den Weg auf von der Müllverarbeitung des 20. zur der des 21. Jahrhunderts.

Projektdaten

Projektnummer 2014-06
Projektart Bau und Anwendung
Projektträger Abfallwirtschaft und Stadtreinigung Freiburg GmbH
Laufzeit Juli 2014 bis Juni 2017
Zuschuss 250.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

BHKW zur Prozessdampf- und Prozesswärmeerzeugung
Freiburg

Ein BHKW zur Dampferzeugung in der Molkerei

Rohmilch in verschiedene Milchprodukte zu verarbeiten ist energieintensiv. Insbesondere benötigen Molkereien viel Wärme, um die Milch zu pasteurisieren oder Käse und Joghurt herzustellen sowie Kälte, um diese Produkte anschließend zu lagern. Gleichzeitig haben Molkereien einen gleichmäßig hohen Wärmebedarf und eignen sich deshalb besonders für Kraftwärmekopplung. Bei der Schwarzwaldmilch GmbH kommt deshalb ein erdgasbetriebenes BHKW zum Einsatz, das über einen Abhitzekessel Heizwasser und Prozessdampf für die verschiedenen Produktionsstufen der Milchverarbeitung bereitstellt. Ein Wärmespeicher in Kombination mit einer ausgeklügelten Steuerungstechnik stellt sicher, dass Wärmebedarf und -produktion aufeinander abgestimmt sind. Während der Einsatz von BHKWs mittlerweile Standard ist, kommen sie bei der Dampferzeugung wegen der hohen Investitionskosten und damit langer Amortisationszeit noch kaum zum Einsatz. Die Anlage der Schwarzwaldmilch dient deshalb auch als Demonstrationsobjekt, das bei regelmäßigen Führungen besichtigt werden konnte. Drei wesentliche Erkenntnisse: •Vor Projektbeginn gab es von verschiedenen Anbietern sehr unterschiedliche Konzepte, die die Auswahl der besten Lösung erschwerte. •Die Auswahl der richtigen Partner ist für ein so komplexes Projekt entscheidend und war hier erfolgreich. • Eine solide Grundlagenermittlung ist das Fundament für ein tragbares Energiekonzept. Über längere Zeiten sind die potentiellen Wärmesenken mit Wärmezähler gemessen worden, nur über ein repräsentatives Wärmeprofil, das alle Betriebszustände wiedergibt, kann sich das im realen Betrieb bestätigen.

Neubau Institut für Umweltmedizin und Krankenhaushygiene
Freiburg

Forschungsbau im Passivhausstandard

Gebäude nach ökologischen Kriterien zu errichten, setzt sich immer mehr durch. Meistens handelt es sich dabei jedoch bisher um Wohn- oder Firmengebäude. Weil sie besonders strenge technische oder hygienische Normen einhalten müssen, ist es bei Forschungsinstituten und Universitäten dagegen schwieriger, energieeffizient zu bauen. Der Neubau des Instituts für Umweltmedizin und Krankenhaushygiene, zuvor in verschiedenen Gebäuden der Universitätsklinik Freiburg untergebracht, ist ein fortschrittliches Beispiel auf diesem Gebiet. Im Passivhausstandard erbaut, weist es mehrere innovative Ansätze auf, darunter eine Lüftungsanlage, die dank moderner Technik die Luft nur halb so oft wechselt wie in der Norm vorgeschrieben und dennoch die strengen Kriterien für den Umgang mit gefährlichen Stoffen erfüllt. Weil der Neubau natürliche Ressourcen geschickt nutzt, kommt das neue Institut auch beim Kühlen und Wärmen mit weniger Energie aus als üblich: Hinter seiner Glassfassade befindet sich eine Brettstapelwand, hinter der die Sonne die Luft erwärmt. Im Winter leitete das System die so erwärmte Luft in die Räume. Im Sommer durchläuft die Zuluft Erdregister, deren Wärmetauscher sie abkühlen. In den Betondecken eingebaute Rohrschlangen kühlen oder wärmen und halten das Gebäude auf einer nahezu konstanten Temperatur. Als Vorbild für andere Universitätsgebäude zeigt der Neubau, dass es auch mit den weit reichenden Sicherheitsvorschriften im Forschungsbereich möglich ist, klimafreundlich zu bauen.

Begleitforschung zur energieoptimierten Sanierung der Waldbachschule mittels innovativer solarer Lüftungstechnik (enSoL)
Offenburg

En-Sol – Solare Lüftung für Schulen

Lüftung und Klimatisierung werden in Zukunft immer wichtiger. Zum einen bringt der Klimawandel heißere Sommer und größere Temperaturschwankungen, zum anderen macht konventionelles Lüften in modernen Niedrig- und Passivenergiehäuser bis zur Hälfte der Wärmeverluste aus. Schulen, wo Schüler tagsüber dichtgedrängt lernen, die nachts aber leer stehen, stellen Architekten vor eine besondere Herausforderung. Im Jahr 2008 förderte der Innovationsfonds bereits ein Projekt in Offenburg mit dem Ziel, Schulen ohne herkömmliche Klimaanlagen zu klimatisieren. Ein weiteres Projekt der Hochschule Offenburg erforschte 2010 die klimafreundliche Lüftung von sanierten Gebäuden. Diese Ergebnisse fließen nun ein in neues Projekt, das ein solares, dezentrales Lüftungssystem an der Offenburger Waldbachschule einsetzt. Während der anstehenden energetischen Sanierung wird dort ein innovatives solares Lüftungssystem mit Wärmetauschern und CO2-Sensoren eingebaut. Diese Kombination kommt vereinzelt schon in Wohngebäuden zum Einsatz; in Schulen ist sie noch unerprobt. In einem an der Fassade angebrachten Luftkollektor erwärmen Sonne und Gebäudewand hierfür die Außenluft; ein Ventilator steuert, wie viel warme oder kalte Frischluft ins Gebäude gelangt. Die Frischluft durchfließt anschließend das Gebäude in einem genau durchdachten Muster. Dezentrale Lüftungssysteme haben wesentliche Vorteile. Sie sind langfristig günstiger und wartungsarmer als herkömmliche Anlagen, verbrauchen kaum Energie und sparen so CO2 ein. Außerdem benötigen sie keine Lüftungskanäle und lassen sich platzsparend nachträglich in die Fassade einbauen, beispielsweise während einer Sanierung. Ziel des Projektes ist es, Steuerungssoftware und Messtechnik zu entwickeln, die Temperatur, Feuchtigkeit und CO2-Konzentration an verschiedenen Stellen im Gebäude misst und auf die Bedürfnisse einer Schule anpasst. Aus diesen Daten erstellen die Projektmitarbeiter in Zusammenarbeit mit der Firma Enersearch Solar und Wärmetechnik Stuttgart einen Steuerungsalgorhythmus. Messdaten und Ergebnisse stehen später der Öffentlichkeit zur Verfügung und machen die Waldbachschule so zum Modell für andere Schulen. Außerdem informiert ein Workshop interessierte Fachleute, und auch die Schule selbst macht das neue System zum Thema im Unterricht und in Veranstaltungen.