Zurück zur Übersicht

Optimierung mobiler Pyrolyseöfen

Seit 2011 erprobt ein Projektteam in einem Innovationsfondsprojekt eine mobile Anlage für die Pyrolyse von Biomasse aus Reb- und Obstschnitt. Dabei wandelt die Anlage unter Nutzung eines australischen Pyrolysesystems - unter mäßiger Hitze und ohne Sauerstoffzufuhr Biomasse in Verbrennungsgas und Biokohle um. Erste Ergebnisse zeigen, dass sich das Verfahren gut dazu eignet, große Mengen an Biomasse in kompakte und wesentlich leichtere Biokohle umzuwandeln. Die Biokohle ist vielseitig verwendbar: Sie ist CO

Während des Projektes zeigte sich jedoch, dass die Abläufe der mobilen Pilotanlage noch an mitteleuropäische Klimabedinungen und Biomassequalitäten angepasst werden müssen. Mit den Erfahrungen der letzten zwei Jahre optimiert deshalb das Team in einem Nachfolgeprojekt den Pyrolyseofen. Die optimale Feuchtigkeit des Brennmaterials, so zeigten die Untersuchungen, liegt unter dreißig Prozent. Die Biomasse aus Weinbau und Obstschnitt liegt jedoch häufig darüber, was eine gleichmäßige Pyrolyse verhindert. Auch ist die gleichmäßige Einförderung der Biomasse ein wichtiger Knackpunkt. In Zusammenarbeit mit der Herstellerfirma entwickeltenn die Projektleiter deshalb einen Aufbau, der im Ablauf optimiert ist und dabei das Pyrolysegut mit der Abwärme des Ofens trocknet.

Die Ergebnisse aus diesem Projekt und den vorgelagerten Untersuchungen können dem umfangreichen Abschlussbericht entnommen werden.

Projektdaten

Projektnummer 2013-13
Projektart Forschung und Studien
Projektträger Projektteam Kiss/ Holweg
Laufzeit September 2013 bis April 2014
Zuschuss 13.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Studie zum Einsatz neuer Einsatzstoffe durch eine Hydrolyse-Vorstufe
Neuried

Mehr Biogas für Neuried

Viele Biomassematerialien eignen sich momentan noch kaum für Biogasanlagen. Dazu zählen besonders Rest- und Abfallstoffe, die in der Landwirtschaft oder der Nahrungsmittelproduktion anfallen sowie Grünschnitte aus der Landschaftspflege. Im Hybridkraftwerk Neuried testete eine der beiden parallel laufenden Anlagen, ob zum Beispiel eine Hydrolysestufe – d. h. die Aufspaltung durch Reaktion mit Wasser – die Stoffe ertragreicher macht. Bisher lief in beiden Anlagen eine konventionelle Trockenfermentation ab, welche die anfallende Flüssigkeit dem Gärgut immer wieder zuführt und durch die darin enthaltenen Bakterien den Gärprozess aufrechterhält. Innovativ war die Studie weil sie verschiedene Methoden in einer noch unerprobten Kombination testete. Dabei wird die Biomasse verkleinert, anschließend versetzt der Mischer diese mit bakterienhaltiger Gärflüssigkeit und startet damit den Gärprozess. Ein so genannter Inlinezerkleinerer homogenisierte die Masse danach noch einmal, um sie pumpfähig zu machen. Dabei anfallendes Biogas saugt die Anlage ab. Die Stoffe liegen nun in zerkleinerter Form vor und bieteten den Bakterien eine größere Angriffsfläche, was deren Arbeit vereinfacht. Weil nur einer der beiden Neurieder Anlagen mit dem neuen Verfahren arbeitete, konnten die Forscher dessen Ergebnisse direkt mit der konventionellen Fermentation vergleichen. Erweist sich das Verfahren als erfolgreich und wirtschaftlich, bietet es sich für viele der 4000 Biogasanlagen in Deutschland an, die dadurch mehr umweltfreundliches Biogas produzieren könnten.

Energetische Nutzung von Maisstroh als landwirtschaftlicher Reststoff
Oberrheinebene

Maisstroh für die Biogasproduktion

Auf bis zu 50 Prozent der Felder am Oberrhein wächst Mais. Dabei handelt es sich überwiegend um Körnermais, also Mais, der vor allem zu Stärke für die Nahrungs- und Pharmaindustrie weiterverarbeitet wird. Anders als beim Silomais, wo die ganze Pflanze verwertet wird, bleibt hierbei das Maisstroh übrig, als ein großer Teil der Pflanze. Es verbleibt gewöhnlich auf dem Feld, wo es die Landwirte häckseln und in den Boden einarbeiten. Trotzdem zersetzt sich das grobe Stroh nur langsam. Gemeinsam mit Landwirten aus der Region erprobte die badenovaWÄRMEPLUS nun, inwiefern sich das Stroh als Substrat für Biogasanlagen eignet und ob es überhaupt wirtschaftlich eingesetzt werden kann. Das Projekt untersuchte dafür, wie man die Maisstrohernte möglichst effizient in den bisherigen Ablauf integrieren kann. Das ist besonders wichtig in der Rheinebene, wo viele Landwirte relativ kleine Felder bewirtschaften und oft nicht über eigene Erntemaschinen verfügen. Auch die sehr unterschiedliche Bodenbeschaffenheit stellt große Ansprüche. Dafür erprobte das Projektteam verschiedene Erntetechniken und Abläufe, alle mit dem Ziel, Boden und Landwirte möglichst wenig durch zusätzliche Fahrten und Ernteeinsätze zu belasten, und das Maisstroh zu bergen, bevor es kompostiert. Für eine Reihe von Maissorten analysierten die Mitarbeiter außerdem, welcher Zerkleinerungsgrad und welche Form der Silierung die höchsten Gaserträge ergeben. In den Erntejahren 2015 bis 2017 wurde das Verfahren angewandt und optimiert. Ziel war es, für die badenova-Biogasanlagen in Neuried und im Gewerbepark Breisgau aus den umliegenden Maisfeldern genug Stroh zu gewinnen, um 20 Prozent des Substratbedarfs zu decken. Die Ergebnisse der dreijährigen Untersuchungen im Rahmen des Projektes ‚Energetische Nutzung von Maisstroh‘ konnten zeigen, dass Körnermaisstroh als Reststoff ein qualitativ gut geeignetes und mit verfügbarer Bergetechnik nutzbares Biogassubstrat darstellt, das den Substratmix einer Biogasanlage kostengünstig ergänzen und dazu beit ragen kann, speziell angebauten Silomais zu substituieren. Alle Ergebnisse aus dem Projekt entnehmen Sie dem beigefügten Abschlussbericht. Darstellung drei wesentlicher Erkenntnisse aus dem Projekt: Maisstroh hat Potential für Biogassubstrat: Dies ergaben die Untersuchungen der Beprobungen, wobei die Methanhektarerträge durch Maisstroh etwa 20 bis 25 Prozent Silomais substituieren können, ohne dadurch zusätzlichen Flächenbedarf entstehen zu lassen. Maisstrohnutzung abhängig von Bodenbeschaffenheit und Organisation der landwirtschaftlichen Strukturen: Hier liegen die Vorteile bei großflächigen, zusammenhängenden und zusammengehörenden Flächen, die den Aufwand der Maisstrohernte gering halten. Zudem erhöht ein zu hoher Kiesbesatz auf den Ackerflächen den Verschleiß der eingesetzten Erntetechnik, welches ggf. ebenfalls zur Unwirtschaftlichkeit führen kann. Maisstrohnutzung abhängig von Materialaufbereitung: Neben der Bergung ist auch die Beschaffenheit des Materials entscheidend für die energetische Verwertung. Nur durch die Vorlagerung eines Zerkleinerungsvorgangs kann ein zur Maistrohnutzung geeignetes Material gewonnen werden.

Energiewirtschaftliche- und lokale Systembetrachtung der Eigenstromnutzung von PV-Anlagen
Freiburg

Einspeisung oder Eigenstrom aus Photovoltaikanlagen

In den vergangenen Jahrzehnten ist die Anzahl der Solaranlagen in Deutschland stetig gestiegen. Wegen der attraktiven Vergütung speisten die Besitzer den Strom bisher überwiegend ins öffentliche Netz ein. In Zukunft jedoch sinken die Einspeisevergütungen, so dass sie dem Strompreis aus dem Netz entsprechen – die so genannte Netzparität – oder sogar darunter liegen. Das macht es einerseits attraktiver, den Strom selbst zu nutzen, andererseits müssen die Betreiber dafür jedoch in Stromspeicher investieren. Anhand des Freiburger Verteilnetzes untersuchte das Fraunhofer Institut für solare Energiesysteme (ISE) und badenova, wie sich die sogenannte Netzparität auf Netz und Nutzerverhalten auswirkt. Mit Hilfe des geografischen Informationssystems (GIS) der badenova analysierten die Wissenschaftler, welche Anlagen wann und wo wie viel Strom herstellen und ab wann es für die Nutzer wirtschaftlich ist, den Strom selbst zu nutzen. Anschließend erstellten sie verschiedene Szenarien, die die Chancen und Risiken für Nutzer und Netzbetreiber abwägen und prognostizieren, wie sich diese auf Strompreis und Umwelt auswirken. Mit Hilfe dieser Daten entwickeln die Projektpartner eine Informationskampagne für Anlagenbesitzer. Das Projekt hilft Netzbetreibern und Anlagenbesitzern sich auf einen dezentraleren Strommarkt einzurichten. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Bei kleinskaligen Projekten – von der Erzeugerseite oder von der Verbraucherseite her kleinskalig – ist es aus ökonomischer Sicht schwierig, sich als zusätzlicher Akteur (≠ Verbraucher) zu involvieren, sofern nur unmittelbare wirtschaftliche Gründe für den Endnutzer eine Rolle spielen und eine hohe Verzinsungserwartung vorliegt. Bei großen Verbrauchergruppen (vergleichbar mit >30 Wohneinheiten) und entsprechend größeren Erzeugeranlagen kann eine wirtschaftliches Geschäftsmodell für alle beteiligten Akteursgruppen jedoch erreicht werden. Batteriesysteme sollten im Kontext der Steigerung des Eigenverbrauchs und des Autarkiegrades nicht zu groß dimensioniert werden. Es herrschen Vorbehalte bei Gewerbe- und Industriekunden hinsichtlich des Einsparens durch „Eigenverbrauch“ aufgrund höherer Komplexität des Geschäftsmodells und regulatorisch gefühlter Unsicherheit; „altes“ Modell „Einspeisevergütung pro kWh“ psychologisch gesehen deutlich überzeugender. Stromabsatz an Verbraucher wird durch erste „2kWh-Batteriekapazität“ noch einmal signifikant reduziert im Bezug zu Verbraucher mit PV-Anlage und keinem Batteriesystem. Dies gilt für alle untersuchten Verbrauchergruppen. Werden Abweichungen zum SLP – verursacht durch ein PV-Batteriesystem – mit Ausgleichsenergiepreisen bewertet, so ergeben sich signifikante „Kosten“ pro Haushalt. PV-bereinigte SLPs sind gut geeignet diese angesetzten „Kosten“ wieder zu senken. Die zentralen Ergebnisse des Projekts finden Sie im Abschlussprojekt.