Zurück zur Übersicht

Studie zur Pyrolyse von Biomasse

Anders als beim Vergasen oder Verbrennen von Biomasse benötigt die Pyrolyse (auch Verschwelung genannt) keinen Sauerstoff, um Stoffe zu zersetzen. Deshalb nennt man dieses Verfahren, dessen Name sich vom griechischen ‚pyr’ für Feuer und ‚lysis’ für Auflösung ableitet, auch eine thermo-chemische Spaltung. Alleine durch das Erhitzen verschwelt der eingesetzte Stoff zu einer kohleartigen Masse. Das macht das Verfahren interessant, um biogene Reststoffe, wie sie in der Landwirtschaft oder der Lebensmittelproduktion anfallen, energetisch zu verwerten.

Bei vielen Stoffen ist noch nicht bekannt, ob sie sich für eine Pyrolyse eignen. Ein Freiburger Projektteam testet das Pyrolyseverfahren für Kleegrasmischungen und für Okara, einem wässrigen Nebenprodukt der Tofuproduktion. Während man in Asien Okara in Suppen oder Gebäck verwendet, entsorgen hiesige Produzenten die Masse überwiegend als Abfallstoff oder verkaufen sie als Viehfutter. Wegen des hohen Wassergehaltes war es bisher schwierig, den Restenergiegehalt von Okara zu nutzen, ohne vorher viel Energie in die Trocknung zu stecken.

Mit einer Pilotanlage testet das Projekt deshalb, ob sich Okara und Kleegras für Pyrolyseverfahren nutzen lassen. Hierbei wird die Biomasse im luftdichten Reaktor zu Synthesegas und Biokohle umgesetzt, die als konzentrierter Kohlenstoff (C) anfällt. In einem zweiten Reaktor verbrennt das Synthesegas emissionsarm zur Wärmenutzung.

Biokohle – d. h. verkohlte Biomasse – zeichnet sich durch zwei Eigenschaften aus: In den Boden eingearbeitet verbessert sie dessen Fähigkeit, Wasser und Nährstoffe zu speichern. Unter dem Namen Terra Preta ist dieses Prinzip aus Südamerika bekannt, wo die Ureinwohner in präkolumbianischer Zeit so die Erträge auf den nährstoffarmen Böden verbesserten. Das Projekt untersucht, wie sich Biokohle aus Okara auf das Pflanzenwachstum und Stoffflüsse auswirkt, ob sie eventuell Schadstoffe enthält und ob sie sich überhaupt für hiesige Böden eignet.

Noch eine zweite Eigenschaft macht die Biokohle zu einem besonderen Stoff. Sie speichert einen Großteil des Kohlenstoffes, einem Hauptbestandteil von Biomasse. Anders als bei fossilen Brennstoffen, deren Nutzung große Mengen an CO2 freisetzt oder beim Verbrennen von Biomasse bzw. Biogas, bei dem die ausgestoßene Menge an CO2 dem entspricht, was die Pflanzen während ihres Wachstums aufgenommen haben, hat die Pyrolyse eine negative CO2-Bilanz. Mit dieser sogenannten C-Sequestrierung bindet man durch die langsame Zerfallsrate der Biokohle den klimaschädlichen Stoff langfristig im Boden.

Damit hat die Pyrolyse das Potential, bisher unbrauchbare oder gemischte biogene Resstoffe zu nutzen und mit dem Düngepotential der Biokohle die CO2-Bilanz verschiedenster Produktionskreisläufe zu verbessern.

Ein weiteres Projekt

Projektdaten

Projektnummer 2010-12
Projektart Forschung und Studien
Projektträger Projektteam Holweg & Schill
Laufzeit Mai 2010 bis Oktober 2010
Zuschuss 11.450

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

ThermCoolProfit
Freiburg

Kälte aus Wärme sinnvoll eingesetzt

Weltweit sind immer mehr Klimaanlagen im Einsatz, selbst in Mitteleuropa steigt durch die Klimaerwärmung die Nachfrage nach klimatisierten Räumen. Den Markt dominiert aber immer noch die Kompressionkältetechnik, die so viel Strom verbraucht, dass Spitzen im Stromverbrauch vermehrt auch während der heißen Monate auftreten. Dabei herrscht angesichts von den 100 Pilotanlagen, die allein in Europa nicht mit Strom sondern Wärme funktionieren, kein Mangel an neuen, umweltfreundlichen Kühltechniken. Die Verbraucher halten sie aber oft noch für nicht wirtschaftlich genug. Im Kontext steigender Strompreise, die es teuer machen konventionelle Anlagen zu betreiben, wird thermische Kühlung aber auch zu einer finanziell interessanten Alternative. Um die Vorbehalte gegenüber thermischen Anlagen weiter abzuschwächen, entwickelte die Hindenburg Consulting gemeinsam mit der Energieagentur Regio Freiburg exemplarisch Kühlkonzepte für fünf Demonstrationsobjekte. Dazu gehörten das Autohaus Ebner in Albbruck, dessen Ausstellungshalle sich im Sommer stark aufheizt oder die Firma Dentaurum aus Ispringen, in deren Werkhallen seit 120 Jahren zahntechnische Produkte entstehen. Beide hatten sich an einem Wettbewerb für die Teilnahme qualifiziert. Hierbei erprobten die Projektleiter einen Fragebogen, der auch in Zukunft dabei hilft, schnell und einfach herauszufinden, wo sich thermische Kühlanlagen lohnen. Nachdem das Konzept verschiedene Möglichkeiten durchgespielt hatte, suchten die Projektleiter die Anlage aus, die unter den jeweiligen Umständen am besten geeignet waren. Das Projekt bewies nicht nur, dass thermische Klimaanlagen wirtschaftlich sind, oft senken die neuen Anlagen auch die Betriebskosten und bewirken, dass die Besitzer im Winter weniger heizen müssen. Durch die Vielfalt der Objekte, vom Bürogebäude über eine Kellerei zur industriellen Werkshalle, hat das Projekt eine große Beispielwirkung und demonstriert, dass es sich in allen Bereichen lohnt, umweltfreundlich zu klimatisieren. Wie groß das Interesse am Projekt und an thermischer Kühltechnik ist, zeigt sich daran, dass sogar aus Spanien Bewerbungen eintrafen. Mehr Informationen auf der Homepage von ThermCoolProfit .

Gülleanwendung auf Grünland: Verminderung gasförmiger und gelöster Stickstoffverluste durch Zusatz pyrogener Pflanzenkohle zum Güllelager
Merzhausen

Biokohle gegen Stickstoffverluste in der Gülledüngung

Gülle ist ein altbewährtes Düngemittel. Beim Austragen von Gülle wie auch von mineralischen Düngern lösen sich jedoch Stickstoffverbindungen. Ammoniak oder Nitrat sickern ins Grundwasser; Lachgas trägt zur Klimaerwärmung bei. Verschiedene Ansätze bekämpfen dieses Problem seit Jahren und haben schon wesentlich dazu beigetragen, die Gülledüngung effizienter und nachhaltiger zu machen. Der Einsatz von Pflanzenkohle aus Pyrolyseanlagen bietet einen weiteren innovativen Baustein, um Stickstoffemissionen zu vermindern. Pyrolyseöfen wandeln bei hoher Hitze Biomasse in Verbrennungsgas und Biokohle um. Zum Einsatz kommt vor allem Material, das anderweitig kaum verwertbar ist. Ein Innovationsfondsprojekt aus dem Jahr 2011 beispielsweise nutzt eine mobile Pyrolyseanlage, um Biomasse aus Rebstockrodung direkt am Weinberg zu verkohlen. Die so gewonnene Kohle reduziert das Volumen der eingesetzten Biomasse drastisch, lässt sich somit leicht transportieren und ist vielseitig einsetzbar. Besonders in der Landwirtschaft zeigt die Biokohle ihr Potential: In den Boden eingearbeitet, speichert sie Wasser und Nährstoffe und wirkt als Kohlenstoffsenke. Aus Praxisberichten ist bekannt, dass im Boden eingearbeitete Biokohle auch Stickstoffemissionen vermindert. Wie genau die Biokohle die Stickstoffverbindungen bindet und den Nitratstoffwechsel verändert ist noch wenig bekannt. Am Mathislehof in Buchenbach erforschten Wissenschaftler vom Institut für Bodenkunde der Universität Freiburg und einer unabhängigen Agentur nun, inwiefern Biokohle Stickstoffemissionen reduziert. Dafür stellten die Forscher am Mathislehof, einem Mutterkuhbetrieb mit Weidewirtschaft, mehrere Versuchsbehälter auf. Die Fässer enthielten Gülle angereichert mit Biokohle in unterschiedlichen Konzentrationen. In regelmäßigen Abständen maßen die Forscher, welche Mengen an Stickstoffverbindungen, unter anderem Ammoniak und Lachgas, aus den Fässern entweichen. Im Frühjahr brachte der Mathieslehof diese verschiedenen Güllegemische mehrmals auf Versuchsflächen aus. Auf diesen Gebieten maßen die Forscher dann über ein Jahr hinweg die gasförmigen und flüssigen Stickstoffemissionen. Das einjährige Projekt maß außerdem, wie lange die Biokohle im Boden verbleibt, ob sie in Hanglagen stark auswäscht und wie sie sich auf das Ökosystem des Weidelandes auswirkt. Das Projekt erforschte damit ein Verfahren, das mit minimalem Aufwand Gülledüngung effizienter und gleichzeitig klimafreundlicher macht. Biokohle verwertet klimaneutral landwirtschaftliche Reststoffe und macht die Nährstoffe der Gülle für Pflanzen besser verfügbar. Weil die Biokohle Ammoniak und andere Geruchsstoffe bindet, nimmt auch der typische Geruch ab und macht so die Gülleausbringung gesellschaftlich akzeptabler. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Aufgrund einer Befragung mit Blindgeruchsproben zeigte sich, dass acht Gramm Kohle pro Liter Gülle ausreichend sind, um eine Geruchsminderung um 40 Prozent zu erzeugen Die Kohlen erwiesen sich in diversen Biotests gut verträglich für die Umwelt und Lebenswelt des Bodens. Für Regenwürmer wirkte Gülle sogar anziehender, wenn diese mit Kohle behandelt worden war Keine messbaren Unterschiede in der Ausgasung von Ammoniak oder Lachgas. Auch nach Gülleausbringung auf Grünland war die N-Freisetzung gleich, ob gasförmig oder flüssig, hier einschließlich Nitrat und Ammonium. Sehr geringe Kohlemengen im ersten Anwendungsjahr könnten die Ursache fehlender Unterschiede sein. Für die beiden verwendeten Pflazenkohlen wurden Unterschiede in ihrer Wirkungsstärke festgestellt. Inwiefern diese jedoch bestimmt werden von Parametern der Herstellungsweise oder Biomassequelle ist aufgrund der vorliegenden Daten nicht ersichtlich The main results were as follows In olfactory tests, however, significant effects were visible in the presence of biochar. Due to blind tests and interviews only 8 g biochar per liter slurry were necessary to reduce the odor by 40 percent. In various bioassays the biochars proved to be without consequences for the soil environment. For earthworms cattle manure seemed even more attractive if it was treated with bochar before. Measurable differences in the emission of ammonia and nitrous oxide were undetectable. Similarly, no effect on the N-release (gaseous or liquid) emerged after slurry spreading on grassland, here including nitrate and ammonium. The lack of differences might be due to very small amounts of biochar in the first year of application (0,08 an 0,4 t/ha). The two biochars displayed different effects during several assays. But determining the criteria responsible for these differences (either parameters of manufacture or biomass source) is not apparent from the available data.

Auswirkungen von Ureasehemmstoffen auf die Mikrobiologie und die Grundwasserqualität
Freiburg

Ureasehemmstoffauswirkung im Grundwasser

Entsprechend der Fassung der Düngeverordnung vom 26. Mai 2017 darf Harnstoff als Düngemittel ab dem 1. Februar 2020 zur Düngung nur noch aufgebracht werden, soweit ihm ein Ureasehemmstoff zugegeben ist oder unverzüglich, jedoch spätestens innerhalb von vier Stunden nach der Aufbringung eingearbeitet wird. Hierfür sind laut der Düngemittelverordnung vom 05. Dezember 2012 zwei Stoffe bzw. Stoffgemische zugelassen. Informationen zur Wechselwirkung mit der Mikrobiologie sowie zum Abbau- oder Verlagerungsverhalten der einzelnen Ureasehemmstoffe sind bislang nur unzureichend dokumentiert. Um diese Wissenslücke zu schließen, sollen Versuche im Feld- und Labormaßstab durchgeführt werden. Im Feld werden in zwei Wasserschutzgebieten Bodenproben von Ackerflächen entnommen, die mit Harnstoff mit und ohne Ureasehemmstoff gedüngt wurden. Diese Proben werden hinsichtlich summarischer mikrobiologischer Parameter (Kulturverfahren) und auf Ureasehemmstoffe untersucht. Parallel sollen in Lysimeterversuchen im Labor unterschiedliche Ureasehemmstoffe bei gleichen Bedingungen eingesetzt werden. Das anfallende Sickerwasser wird auf die eingesetzten Ureasehemmstoffe und die entsprechenden mikrobiologischen Parameter analysiert. Ziel ist es, die Wechselwirkungen zwischen Ureasehemmstoffen und Mikrobiologie näher zu charakterisieren. Weiterhin sollen die generelle Beimischung geprüft und Empfehlungen zur Auswahl eines geeigneten Ureasehemmstoffes mit möglichst geringer Grundwassergefährdung gegeben werden. Die aussagekräftigsten Parameter zur Standorteinschätzung sollen identifiziert und daraus eine übertragbare Monitoringstrategie abgeleitet werden. Diese Betrachtungen beinhalten neben den Auswirkungen der betrachteten Ureasehemmstoffe auf die Mikrobiologie und dem Abbau der Stoffe durch Mikroorganismen auch die Bewertung einer möglichen Reduzierung klimarelevanter Gase.