Zurück zur Übersicht

Wenn Abwasser zum Rohstoff wird

Der Durchschnittsdeutsche verbraucht 128 Liter Wasser am Tag, davon entfallen etwa 46 Liter auf die Körperpflege, also beispielsweise Baden oder Duschen. Energieintensiv erhitzt ist dieses nur leicht verschmutzte Grauwasser zu schade um ungenutzt als Abwasser in die Kanalisation zu fließen. Bisherige Wasserrecyclinganlagen nutzen aber bisher entweder nur dessen Restwärme, um damit Brauchwasser zu erhitzen oder reinigen das Grauwasser, um es beispielsweise für Waschmaschine und Toilettenspülung wieder zu verwenden. Seit 2006 entwickelte die Firma Pontos ein Gesamtsystem, das anschließend in einem Studentenwohnheim im Freiburger Stadtteil Vauban eine zweijährige Testphase durchlief. Das Fraunhofer Institut für System- und Innovationsforschung in Karlsruhe begleitete den Testbetrieb.

Dabei durchläuft das warme Grauwasser einen speziellen Wärmetauscher, in dem es seine Wärme an das zu erwärmende Trinkwasser abgibt. Um das biologisch-physikalisch Wasser anschließend aufzubereiten, nutzte die Firma Pontos das System AquaCycle. Die kompakte, einfach zu bedienende Anlage filtert das Grauwasser vor und reinigt es zweifach durch Biokulturen, um es schließlich mit UV-Strahlen zu hygienisieren. Nach dem Wärmetauscher hat das Wasser noch etwa 10 Grad, was die biologischen Abbauprozesse erschwert, die bisher mit 20 bis 30 Grad abliefen. Obwohl die niedrigere Temperatur die Biokulturen weniger leistungsfähig macht, stellten die Experten fest, dass die Anlage immer noch effizient genug läuft.

Wasserfiltration und Wärmerückgewinnung zu kombinieren bietet mehrere Vorteile: Weil die Bewohner weniger Trinkwasser verbrauchen und Abwasser in die Kanalisation leiten, sinkt die Wasserrechnung. Außerdem braucht die die Heizung weniger Energie um das schon vorgewärmte Trinkwasser zu erhitzen. Das Trinkwasser zu erwärmen macht bei einem Niedrigenergiehaus 40 Prozent des Energiebedarfs aus, bei einem Passivhaus sogar mehr als die Hälfte. Für das Freiburger Wohnheim sank der Energiebedarf für die Warmwasserbereitung um 20 Prozent. Außerdem ersetzte das Grauwasser das Trinkwasser für die Toilettenspülung fast vollständig.

Projektdaten

Projektnummer 2006-06
Projektart Forschung und Studien
Projektträger Pontos Umwelttechnik
Laufzeit März 2006 bis Dezember 2010
Zuschuss 234.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

KinderEnergieFahrrad
Freiburg

Energieerlebnisräder für Kinder

Seit vielen Jahren sensibilisiert der gemeinnützige Verein Solare Zukunft e.V. Kinder und Erwachsene mit Projekttagen, pädagogischen Fortbildungen oder Bastelaktionen für den Klima- und Umweltschutz. Zu den Angeboten des Vereins gehören auch Energiefahrräder, also umgebaute Heimtrainer, auf denen mit Muskelkraft kleine Elektrogeräte angetrieben werden können. Unterstützt vom Innovationsfonds kommen unter dem Titel „Fahrradkino“ zehn Energiefahrräder seit 2012 auf verschiedenen Veranstaltungen zum Einsatz. Für Kinder aber sind diese Erwachsenengeräte zu groß und lassen somit eine wichtige Zielgruppe außen vor. Im aktuellen Projekt entwickelt der Verein deshalb speziell zwei Energieerlebnisräder für Kindergarten- und Grundschulkinder. Dafür bauen Mitarbeiter einen Gleichstromgenerator und Wechselrichter in einen Heimtrainer für Kinder und einen Rollentrainer ein und testen, welches Konzept sicherer und praktischer ist. Erste Einsätze in Kitas und Veranstaltungen ergänzen den Praxistest. Die Energiefahrräder sind ein besonders anschauliches Instrument, um Kindern den Zusammenhang zwischen Energieerzeugung und -verbrauch anschaulich zu machen. Indem sie Lampen, Ventilatoren, Radios, Küchengeräte und andere alltägliche Elektrogeräte selbst antreiben, entwickeln die Kinder Verständnis für den Wert von Energie. Wie bei allen Projekten von Solare Zukunft entwickeln die Mitarbeiter auch hier pädagogische Begleitmaterialien, so dass nach Projektende auch andere Einrichtungen die Fahrräder für Unterricht und Projekttage ausleihen können. Außerdem bietet Solare Zukunft anderen Institutionen ihre Konstruktionspläne für den Nachbau von Kinderenergierädern an. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Kinder-Energie-Fahrräder sind derzeit auf dem Markt nicht erhältlich. Deshalb stoßt unser Modell auf großes Interesse. Andere Bildungsinstitutionen sind schon auf das Kinder-Energie-Fahrrad aufmerksam geworden und möchten es ausleihen. Eine realistische Zeitplanung ist bei innovativen Projekten eine große Herausforderung, weil sich die Dauer der Entwicklungsfasen nicht genau vorher sagen lässt und unvorhergesehene Aufgaben die Regel sind. Dies ist allerdings auch einer der Reize an Innovation Mit dem Kinder-Energie-Fahrrad ist es uns gelungen, dass 4-jährige in der Lage sind, damit elektrische Verbraucher wie z.B. Eisenbahn oder Kassenabspielgerät zu betreiben und den Zusammenhang der Energieumwandlung spielerisch zu erfassen.

	Machbarkeitsstudie zum Einsatz einer innovativen Technologie zur Bioenergieerzeugung mittels Pyrolyse mit niedrigen Staubemissionen und hohem CO2-Reduktionspotential
Freiburg

Studie zur Pyrolyse von Biomasse

Anders als beim Vergasen oder Verbrennen von Biomasse benötigt die Pyrolyse (auch Verschwelung genannt) keinen Sauerstoff, um Stoffe zu zersetzen. Deshalb nennt man dieses Verfahren, dessen Name sich vom griechischen ‚pyr’ für Feuer und ‚lysis’ für Auflösung ableitet, auch eine thermo-chemische Spaltung. Alleine durch das Erhitzen verschwelt der eingesetzte Stoff zu einer kohleartigen Masse. Das macht das Verfahren interessant, um biogene Reststoffe, wie sie in der Landwirtschaft oder der Lebensmittelproduktion anfallen, energetisch zu verwerten. Bei vielen Stoffen ist noch nicht bekannt, ob sie sich für eine Pyrolyse eignen. Ein Freiburger Projektteam testet das Pyrolyseverfahren für Kleegrasmischungen und für Okara, einem wässrigen Nebenprodukt der Tofuproduktion. Während man in Asien Okara in Suppen oder Gebäck verwendet, entsorgen hiesige Produzenten die Masse überwiegend als Abfallstoff oder verkaufen sie als Viehfutter. Wegen des hohen Wassergehaltes war es bisher schwierig, den Restenergiegehalt von Okara zu nutzen, ohne vorher viel Energie in die Trocknung zu stecken. Mit einer Pilotanlage testet das Projekt deshalb, ob sich Okara und Kleegras für Pyrolyseverfahren nutzen lassen. Hierbei wird die Biomasse im luftdichten Reaktor zu Synthesegas und Biokohle umgesetzt, die als konzentrierter Kohlenstoff (C) anfällt. In einem zweiten Reaktor verbrennt das Synthesegas emissionsarm zur Wärmenutzung. Biokohle – d. h. verkohlte Biomasse – zeichnet sich durch zwei Eigenschaften aus: In den Boden eingearbeitet verbessert sie dessen Fähigkeit, Wasser und Nährstoffe zu speichern. Unter dem Namen Terra Preta ist dieses Prinzip aus Südamerika bekannt, wo die Ureinwohner in präkolumbianischer Zeit so die Erträge auf den nährstoffarmen Böden verbesserten. Das Projekt untersucht, wie sich Biokohle aus Okara auf das Pflanzenwachstum und Stoffflüsse auswirkt, ob sie eventuell Schadstoffe enthält und ob sie sich überhaupt für hiesige Böden eignet. Noch eine zweite Eigenschaft macht die Biokohle zu einem besonderen Stoff. Sie speichert einen Großteil des Kohlenstoffes, einem Hauptbestandteil von Biomasse. Anders als bei fossilen Brennstoffen, deren Nutzung große Mengen an CO2 freisetzt oder beim Verbrennen von Biomasse bzw. Biogas, bei dem die ausgestoßene Menge an CO2 dem entspricht, was die Pflanzen während ihres Wachstums aufgenommen haben, hat die Pyrolyse eine negative CO2-Bilanz. Mit dieser sogenannten C-Sequestrierung bindet man durch die langsame Zerfallsrate der Biokohle den klimaschädlichen Stoff langfristig im Boden. Damit hat die Pyrolyse das Potential, bisher unbrauchbare oder gemischte biogene Resstoffe zu nutzen und mit dem Düngepotential der Biokohle die CO2-Bilanz verschiedenster Produktionskreisläufe zu verbessern. Ein weiteres Projekt

	Machbarkeitsstudie zum Einsatz einer innovativen Technologie zur Bioenergieerzeugung mittels Pyrolyse mit niedrigen Staubemissionen und hohem CO2-Reduktionspotential
Freiburg

Studie zur Pyrolyse von Biomasse

Anders als beim Vergasen oder Verbrennen von Biomasse benötigt die Pyrolyse (auch Verschwelung genannt) keinen Sauerstoff, um Stoffe zu zersetzen. Deshalb nennt man dieses Verfahren, dessen Name sich vom griechischen ‚pyr’ für Feuer und ‚lysis’ für Auflösung ableitet, auch eine thermo-chemische Spaltung. Alleine durch das Erhitzen verschwelt der eingesetzte Stoff zu einer kohleartigen Masse. Das macht das Verfahren interessant, um biogene Reststoffe, wie sie in der Landwirtschaft oder der Lebensmittelproduktion anfallen, energetisch zu verwerten. Bei vielen Stoffen ist noch nicht bekannt, ob sie sich für eine Pyrolyse eignen. Ein Freiburger Projektteam testet das Pyrolyseverfahren für Kleegrasmischungen und für Okara, einem wässrigen Nebenprodukt der Tofuproduktion. Während man in Asien Okara in Suppen oder Gebäck verwendet, entsorgen hiesige Produzenten die Masse überwiegend als Abfallstoff oder verkaufen sie als Viehfutter. Wegen des hohen Wassergehaltes war es bisher schwierig, den Restenergiegehalt von Okara zu nutzen, ohne vorher viel Energie in die Trocknung zu stecken. Mit einer Pilotanlage testet das Projekt deshalb, ob sich Okara und Kleegras für Pyrolyseverfahren nutzen lassen. Hierbei wird die Biomasse im luftdichten Reaktor zu Synthesegas und Biokohle umgesetzt, die als konzentrierter Kohlenstoff (C) anfällt. In einem zweiten Reaktor verbrennt das Synthesegas emissionsarm zur Wärmenutzung. Biokohle – d. h. verkohlte Biomasse – zeichnet sich durch zwei Eigenschaften aus: In den Boden eingearbeitet verbessert sie dessen Fähigkeit, Wasser und Nährstoffe zu speichern. Unter dem Namen Terra Preta ist dieses Prinzip aus Südamerika bekannt, wo die Ureinwohner in präkolumbianischer Zeit so die Erträge auf den nährstoffarmen Böden verbesserten. Das Projekt untersucht, wie sich Biokohle aus Okara auf das Pflanzenwachstum und Stoffflüsse auswirkt, ob sie eventuell Schadstoffe enthält und ob sie sich überhaupt für hiesige Böden eignet. Noch eine zweite Eigenschaft macht die Biokohle zu einem besonderen Stoff. Sie speichert einen Großteil des Kohlenstoffes, einem Hauptbestandteil von Biomasse. Anders als bei fossilen Brennstoffen, deren Nutzung große Mengen an CO2 freisetzt oder beim Verbrennen von Biomasse bzw. Biogas, bei dem die ausgestoßene Menge an CO2 dem entspricht, was die Pflanzen während ihres Wachstums aufgenommen haben, hat die Pyrolyse eine negative CO2-Bilanz. Mit dieser sogenannten C-Sequestrierung bindet man durch die langsame Zerfallsrate der Biokohle den klimaschädlichen Stoff langfristig im Boden. Damit hat die Pyrolyse das Potential, bisher unbrauchbare oder gemischte biogene Resstoffe zu nutzen und mit dem Düngepotential der Biokohle die CO2-Bilanz verschiedenster Produktionskreisläufe zu verbessern. Ein weiteres Projekt