Zurück zur Übersicht

Biogas soll die sinkende Deponiegasmenge ersetzen

Beim biologischen und chemischen Abbau von organischem Abfall entsteht Methan, das sich in einem Blockheizkraftwerk in Strom und Wärme umwandeln lässt. Seit 2005 ist es in Deutschland aber verboten, Abfälle einzulagern ohne sie vorzubehandeln, so dass kaum noch organisches Material auf den Deponien anfällt. Diese an sich erfreuliche Entwicklung führt dazu, dass die Menge des Deponiegases sinkt und seine stärker schwankende Qualität Probleme beim Verbrennen bereitet. In den 300 bereits oder bald geschlossenen deutschen Deponien entstehen gleichzeitig in den nächsten Jahren noch etwa 180 Mio. Kubikmeter Deponiegas, das die Betreiber wegen seiner minderen Qualität oft abfackeln müssen.

Die badenova Wärmeplus zusammen mit der Abfallwirtschaft und Städtereinigung Freiburg (ASF) und der Firma Remondis BKF lösten das Problem mit einem innovativen Verfahren, das schwaches Deponiegas mit Biogas aufwertet. Anschließend verwertet das Blockheizkraftwerk Landwasser das neue Gasgemisch zur Erzeugung von Strom und Heizwärme und erbringt so in zehn Jahren 101.500 Megawattstunden mehr als unkombinierte Verfahren. Das Biogas dafür stammt aus der Biogasanlage der Firma Remondis in der Freiburger Tullastraße, die den Bioabfall aus der Biotonne verarbeitet. Weil Regel- und Verfahrenstechnik noch unerprobt waren prüfte der Testlauf in verschiedenen Phasen unterschiedliche Gasgemengen, um den Prototyp zu optimieren.

Mindestens 45 weitere Deponien in Deutschland eignen sich für das Verfahren und lassen mit einem Potential von 27 Millionen Kubikmetern Deponiegas eine Ausbeute von 100 Gigawattstunden klimafreundlicher Strom- und Wärmeerzeugung erwarten.

Weiterführende Informationen zum Vorhaben und den Ergebnissen aus dem Projekt finden Sie im beigefügten Abschlussbericht. Spannende Hintergründe zu weiteren ökologischen Aktivitäten finden Sie unter anderem in einem aktuellen Förderprojekt zur Verwertung biogener Abfälle.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Die Brennstoffzusammensetzung hat einen großen Einfluss auf die Wirtschaftlichkeit des Anlagenbetriebs. Je nach Brennstoffzusammensetzung ergeben sich sehr unterschiedliche Brennstoffmischkosten (Reformgas, Biogas, Biomethan) und weiterhin wird der eingespeiste Strom entsprechend den Brennstoffbestandteilen unterschiedlich hoch vergütet.
  • Die schnell schwankenden Änderungen der Brennstoffzusammensetzung und der Brennstoffmenge, als auch die fehlende Versorgungssicherheit bei Ausfall einer Gasproduktionsstätte führen zu höheren Stillstandszeiten im Vergleich zu erdgasgasversorgten BHKW-Konzepten.
  • Zur Regelung der Brennstoffzusammensetzung ist ein MSR-System erforderlich, welche die Druckverhältnisse, Heizwerte und Mengenanteile so aufeinander abstimmt, dass sämtliche Anlagen innerhalb ihrer vorgegebenen Parameter betrieben werden können.

Projektdaten

Projektnummer 2009-08
Projektart Forschung und Studien
Projektträger badenova Wärmeplus
Laufzeit November 2008 bis November 2015
Zuschuss 199.710

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Energiewirtschaftliche- und lokale Systembetrachtung der Eigenstromnutzung von PV-Anlagen
Freiburg

Einspeisung oder Eigenstrom aus Photovoltaikanlagen

In den vergangenen Jahrzehnten ist die Anzahl der Solaranlagen in Deutschland stetig gestiegen. Wegen der attraktiven Vergütung speisten die Besitzer den Strom bisher überwiegend ins öffentliche Netz ein. In Zukunft jedoch sinken die Einspeisevergütungen, so dass sie dem Strompreis aus dem Netz entsprechen – die so genannte Netzparität – oder sogar darunter liegen. Das macht es einerseits attraktiver, den Strom selbst zu nutzen, andererseits müssen die Betreiber dafür jedoch in Stromspeicher investieren. Anhand des Freiburger Verteilnetzes untersuchte das Fraunhofer Institut für solare Energiesysteme (ISE) und badenova, wie sich die sogenannte Netzparität auf Netz und Nutzerverhalten auswirkt. Mit Hilfe des geografischen Informationssystems (GIS) der badenova analysierten die Wissenschaftler, welche Anlagen wann und wo wie viel Strom herstellen und ab wann es für die Nutzer wirtschaftlich ist, den Strom selbst zu nutzen. Anschließend erstellten sie verschiedene Szenarien, die die Chancen und Risiken für Nutzer und Netzbetreiber abwägen und prognostizieren, wie sich diese auf Strompreis und Umwelt auswirken. Mit Hilfe dieser Daten entwickeln die Projektpartner eine Informationskampagne für Anlagenbesitzer. Das Projekt hilft Netzbetreibern und Anlagenbesitzern sich auf einen dezentraleren Strommarkt einzurichten. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Bei kleinskaligen Projekten – von der Erzeugerseite oder von der Verbraucherseite her kleinskalig – ist es aus ökonomischer Sicht schwierig, sich als zusätzlicher Akteur (≠ Verbraucher) zu involvieren, sofern nur unmittelbare wirtschaftliche Gründe für den Endnutzer eine Rolle spielen und eine hohe Verzinsungserwartung vorliegt. Bei großen Verbrauchergruppen (vergleichbar mit >30 Wohneinheiten) und entsprechend größeren Erzeugeranlagen kann eine wirtschaftliches Geschäftsmodell für alle beteiligten Akteursgruppen jedoch erreicht werden. Batteriesysteme sollten im Kontext der Steigerung des Eigenverbrauchs und des Autarkiegrades nicht zu groß dimensioniert werden. Es herrschen Vorbehalte bei Gewerbe- und Industriekunden hinsichtlich des Einsparens durch „Eigenverbrauch“ aufgrund höherer Komplexität des Geschäftsmodells und regulatorisch gefühlter Unsicherheit; „altes“ Modell „Einspeisevergütung pro kWh“ psychologisch gesehen deutlich überzeugender. Stromabsatz an Verbraucher wird durch erste „2kWh-Batteriekapazität“ noch einmal signifikant reduziert im Bezug zu Verbraucher mit PV-Anlage und keinem Batteriesystem. Dies gilt für alle untersuchten Verbrauchergruppen. Werden Abweichungen zum SLP – verursacht durch ein PV-Batteriesystem – mit Ausgleichsenergiepreisen bewertet, so ergeben sich signifikante „Kosten“ pro Haushalt. PV-bereinigte SLPs sind gut geeignet diese angesetzten „Kosten“ wieder zu senken. Die zentralen Ergebnisse des Projekts finden Sie im Abschlussprojekt.

Anorganische Zuschlagstoffe in Biogasanlagen
Offenburg

Anorganische Zusatzstoffe für mehr Biogas

Biogas gehört zu den wenigen speicherbaren erneuerbaren Energien und ist damit ein wichtiger Bestandteil für eine nachhaltige Energiewirtschaft. Um Konkurrenz mit der Nahrungsmittelproduktion zu verhindern, setzen Biogasanlagen vermehrt auf Abfall- und Reststoffe. Dazu gehören beispielsweise Speisereste, Schlachtabfälle oder Molke. Diese Reststoffe möglichst effektiv zu Biogas zu vergären stellt die Anlagenbetreiber aber vor Schwierigkeiten. Oft fallen dabei Stoffe an, die den Fermentationsprozess verlangsamen. Der Innovationsfonds förderte bereits mehrere Projekte zur Vergärung verschiedener Abfallstoffe. Bei einem dieser Projekte, der Molkebiogasanlage der Käserei Monte Ziego in Teningen, fanden Forscher der Hochschule Offenburg heraus, das anorganische Zuschlagstoffe die Effizienz der Anlage deutlich steigerten. Anorganische Zuschlagstoffe sind natürliche Mineralien, die der Betreiber in kleinen Mengen im Gärtank zugibt. Im Fall der Teninger Anlage war das Bentonit, ein Tonmineral gemischt mit weiteren Begleitmineralien, andere Zuschlagstoffe bestehen aus Silikaten (Vermikulite), oder vulkaniertem Glas (Perlite). Die Erfahrung aus Teningen weitete das Projekt aus und testete, wie sich verschiedene Zuschlagstoffe auf die Biogasproduktion auswirken. Letztere werden nicht von den Biogasbakterien aufgenommen, sondern wirken stattdessen in der Biogasbrühe stabilisierend und bieten den Bakterien die Möglichkeit, sich anzulagern. Im Projekt testeten die Wissenschaftler, welche Stoffe die Biogasproduktion verlangsamen, und welche Zuschlagstoffe sich am besten eignen, um dem entgegenzuwirken. Gleichzeitig überprüften sie, wie sich die zugesetzten Stoffe auf die gesamte Anlage auswirken, beispielsweise auf Filter und Pumpen. Sie konnten dabei auf eigene Testanlagen und langjährige Erfahrung in der Biogasforschung zurückgreifen. Mineralische Zuschlagstoffe sind preiswert und bieten einen innovativen Weg, um die Biogasproduktion aus Reststoffen effizienter und wirtschaftlicher zu machen. Der Abschlussbericht folgt Anfang 2018 und gibt einen detailierten Einblick in die Foruschungsergebnisse. Drei Haupterkenntnisse: Die Zuschlagstoffe Bentonit StabiSil P7, Braunkohlekoks C85 zeigten sich als geeignet, einer Versäuerung in kontinuierliche gefütterten Biogasanlagen entgegenzuwirken. Bentonit StabiSil P7 kann mit einer Konzentration von 0,1 % bis 1,0 % und Braunkohlekoks C-85 bis zu einer Konzentration bis 1,5 % bei versäuernden Substraten eingesetzt werden, um die hydraulische Belastung einer Biogasanlage deutlich zu erhöhen. Überdosierungen der anorganischen Zuschlagstoffe können zu einer Verminderung der Biogasausbeute führen. Allgemeingültige Voraussagen können nicht getroffen werden. Voruntersuchungen sind entsprechend der Paarung „anorganischer Zuschlagstoff/Biogassubstrat“ in jedem Fall dringend anzuraten.

Grid2Smart - Konzeption zur Migration des Stromnetzes in ein Smart Grid mit einem hohen Anteil dezentraler Erzeuger
Freiburg

Intelligentes Stromnetz für dezentrale Erzeuger

Immer mehr Wasserkraft-, Windkraft-, und Solaranlagen speisen ihren Strom ins Netz ein. Auch die Zahl der KWK-Anlagen steigt stetig. Diese an sich erfreuliche Entwicklung stellt die Netzbetreiber vor neue Herausforderungen. Sie müssen zunehmend dezentrale Erzeuger in ihr Netz integrieren und für einen stabilen Betrieb sorgen. Auch für die Anlagenbetreiber ändert sich die Lage in den nächsten Jahren. Das KWK-Gesetz fördert schon 2011 viele Anlagen nicht mehr, so dass ihre Besitzer neue Strategien für eine wirtschaftliche Betriebsführung finden müssen. Die Gemeindewerke Gundelfingen, das Fraunhofer Institut für Solare Energiesysteme und die badenova-Töcher Netz und WärmePlus analysierten deshalb die Netzsituation der Gundelfinger EEG- und KWK-Anlagen. Ziel war es, den Lastfluss zu berechnen und mögliche Energieszenarien zu erstellen. Dazu integrierten die Wissenschaftler die Daten aus dem Netz und von den Erzeugern in einen speziellen Betriebsführungsassistenten und in das geografische Informationssystem (GIS) der badenova. Dieser Betriebsführungsassistent für die Leitwarten entstand in einem früheren Projekt von ISE und badenova, das erstmals eine größere Anzahl dezentraler Anlagen zu einem ‚virtuellen Kraftwerk’ zusammenfasste. Nach einer Testphase simulierten die Forscher dann verschiedene Szenarien und konnten das Netz nach ökologischen oder wirtschaftlichen Kriterien optimieren. Das Projekt ist damit Modell für andere Gemeinden und Stromnetzbetreiber. Projekterkenntnisse: Durch State Estimation kann der Stromnetzzustand in Echtzeit bestimmt werden. Daraus ergeben sich Vorteile für die Betriebsführung und Planung der Netze. Es ist dafür ausreichend bereits vorhandene Messungen durch Wetterprognosen zu ergänzen. Die Untersuchung der Kraftwärmekopplungsanlagen im Netzgebiet zeigt auf, dass die angewendeten Betriebsführungsstrategien bereits sehr gut sind. Eine weitere Verdienstmöglichkeit ist Eigenstromnutzung. Damit können die Strombezugskosten verringert werden. Spannungsabhängige Einspeisung von Blindleistung ist eine sehr effiziente Möglichkeit zur Spannungsregelung. Die komplexe Parametrierung der Anlagen ist Aufgabe der Anlagenbetreiber. Um die Einstellungen zu überprüfen, sollte der Netzbetreiber temporär das Verhalten der Anlage messen.