Zurück zur Übersicht

Eigenes Kraftwerk für 3-Familienhaus

Obwohl Energiemodell der Zukunft, waren bisherige Blockheizkraftwerke nur für größere Gebäude geeignet. Während in einem Feldtest der Badenova erste Modelle für Ein- und Zweifamilienhäuser erprobt werden, kommt in einem neu errichteten 3-Familien-Niedrigenergiehaus in Freiburg Ebnet die zweite Generation von Blockheizkraftwerken zum Einsatz.

Whispergen nutzt Stirlingmotoren, die Gas außerhalb des Motors verbrennen und so weniger Schadstoffe ausstoßen als herkömmliche Verbrennungsmotoren. Für die nötige Kühlung sorgt ein Wasserkreislauf, in dem die Abwärme gleichzeitig Heiz- und Brauchwasser erhitzt. Auf diese Weise arbeiten BHKW überdurchschnittlich effizient und sparen Energie und Kosten.

Die Anlage erbringt bis zu 12 kW Wärmeleistung und 1 kW elektrischer Leistung, wobei die genauen Daten und mögliche Probleme während der Projektlaufzeit am Ebneter Prototyp durch das umfangreiche Monitoring analysiert wurden.

Projektdaten

Projektnummer 2008-06
Projektart Bau und Anwendung
Projektträger Bauherrengemeinschaft Ebnet/Zartenerstraße
Laufzeit bis Februar 2013
Zuschuss 28.894

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Neubau Institut für Umweltmedizin und Krankenhaushygiene
Freiburg

Forschungsbau im Passivhausstandard

Gebäude nach ökologischen Kriterien zu errichten, setzt sich immer mehr durch. Meistens handelt es sich dabei jedoch bisher um Wohn- oder Firmengebäude. Weil sie besonders strenge technische oder hygienische Normen einhalten müssen, ist es bei Forschungsinstituten und Universitäten dagegen schwieriger, energieeffizient zu bauen. Der Neubau des Instituts für Umweltmedizin und Krankenhaushygiene, zuvor in verschiedenen Gebäuden der Universitätsklinik Freiburg untergebracht, ist ein fortschrittliches Beispiel auf diesem Gebiet. Im Passivhausstandard erbaut, weist es mehrere innovative Ansätze auf, darunter eine Lüftungsanlage, die dank moderner Technik die Luft nur halb so oft wechselt wie in der Norm vorgeschrieben und dennoch die strengen Kriterien für den Umgang mit gefährlichen Stoffen erfüllt. Weil der Neubau natürliche Ressourcen geschickt nutzt, kommt das neue Institut auch beim Kühlen und Wärmen mit weniger Energie aus als üblich: Hinter seiner Glassfassade befindet sich eine Brettstapelwand, hinter der die Sonne die Luft erwärmt. Im Winter leitete das System die so erwärmte Luft in die Räume. Im Sommer durchläuft die Zuluft Erdregister, deren Wärmetauscher sie abkühlen. In den Betondecken eingebaute Rohrschlangen kühlen oder wärmen und halten das Gebäude auf einer nahezu konstanten Temperatur. Als Vorbild für andere Universitätsgebäude zeigt der Neubau, dass es auch mit den weit reichenden Sicherheitsvorschriften im Forschungsbereich möglich ist, klimafreundlich zu bauen.

Ein Batterie-Kleinspeicher für Balkon-Solaranlagen - Erhöhung der Wirtschaftlichkeit von Mikro-PV-Anlagen
Offenburg

Mikro-PV-Anlage mit Batterie-Kleinspeicher

Mikro-PV-Anlagen sind kleine Solaranlagen bestehend aus ein bis zwei Solarmodulen mit einer Leistung von 300 bis 600 W(p), die mit einem Inverter für die Einspeisung in das Hausnetz mit Hilfe einer Einspeisesteckdose ausgerüstet sind. Diese Anlagen können neben dem Dach auch im Garten, auf der Terrasse, auf dem Balkon, auf einem Carport oder auch an der Fassade montieren werden. Scheint die Sonne und wird im Haushalt Strom verbraucht, senken die 300 bis 600 W(p) großen Anlagen den Strombezug. Wird im Haushalt kein Strom verbraucht, geht der Produktionsüberschuss, wie bei „großen“ PV-Anlagen, ins Stromnetz. Die Zahl der in Deutschland installierten Anlagen wird bereits auf 30.000 geschätzt. Allerdings haben Untersuchungen im Rahmen des Innovationsfonds-Projektes „Mikro-PV“ gezeigt, dass trotz der geringen Leistungen der Anlagen nur etwa die Hälfte des erzeugten Stroms im eigenen Haushalt verwendet werden kann, denn oftmals fallen die Zeiten der PV-Stromproduktion nicht mit den Zeiten des Verbrauchs zusammen. Tagsüber sind die Anlagenbesitzer z.B. bei der Arbeit, Großverbraucher wie die Wasch- und Spülmaschine werden erst am Abend angeschaltet, wenn der Punkt der höchsten Sonneneinstrahlung bereits über-schritten ist. Im Projekt soll daher versucht werden, die Eigennutzungsquote des in Mikro-PV-Anlagen erzeugten Stroms durch Batteriespeicher zu erhöhen. Dabei ist der Batteriespeicher einer Mikro-PV-Anlage so auszulegen, dass er einerseits eine deutlich höhere Nutzung des eigenerzeugten Stroms erlaubt, andererseits aber nicht zu groß und damit teuer ausgelegt wird. Somit wäre es sinnvoll, vorhandene Bauteile einer Mikro-PV-Anlage, wie z.B. Mikro-Inverter und Einspeisesteckdose für das Gesamtsystem aus PV-Anlage und Batterie mit zu nutzen, also anders als bei „großen“ PV-Anlagen für die Batterie keinen separaten Wechselrichter vorzusehen. Bei der Wahl der Batterie ist entweder eine günstige und robuste Technik zu wählen oder vorhandene Batterien z.B. von Elektrokleinfahrzeugen (eBikes, eRollern) ein-zusetzen. Gelingt dies, ließe sich ein Mikro-PV-Batteriesystem sehr wirtschaftlich betreiben, was zu einer weiteren Verbreitung dieser Systeme führen würde.

Entwicklung und Bau einer Wasserkraftmaschine mit hohem Nutzungsgrad für bestehende Bauwerke im Abwasserbereich
Waldshut-Tiengen

Innovative Wasserkraft für Kläranlagen

Abwasser zu reinigen ist energieintensiv und damit relativ teuer. Gleichzeitig bieten die rund 10.000 deutschen Kläranlagen mit ihrem komplexen Kanal- und Röhrennetz ein ungenutztes Wasserkraftpotential. Dieses blieb aber bisher aus technischen Gründen weitgehend ungenutzt, denn herkömmliche Wasserkraftanlagen eignen sich kaum für die besonderen Gegebenheiten einer Kläranlage. Dazu zählen unter anderem schwankende Abwassermengen und hohe Fallhöhen in engen Röhren von oftmals nur anderthalb Metern Durchmesser. Aufbauend auf zwei erfolgreichen Prototypen entwickelt die Ühlinger Firma Karl Kraus Maschinenbau - Umwelttechnik eine Wasserkraftanlage, die - an diese speziellen Erfordernisse angepasst - ohne bauliche Veränderungen eingebaut werden kann. Mehrere hintereinander geschaltete, oberschlächtige Wasserräder nutzen in den engen Röhren, Schächte und Kanälen die Wasserkraft optimal. Dabei ist besonders der ungestörte Wasserstrom in und zwischen den Wasserrädern ein Kernpunkt der Entwicklungen. Hergestellt aus rostfreiem Stahl, eignen sich die Wasserräder sowohl für gereinigtes als auch für Schmutzwasser. Sie sind mit besonderen Stauschildern ausgestattet, die unabhängig vom Wasserfluss immer die gleiche Staumenge halten. Kraus Maschinenbau testete ein solches System bereits auf kleinem Versuchsmaßstab und erprobt nun eine Pilotanlage in der Kläranlage Waldshut-Tiengen. Das Projekt analysierte, wie wirtschaftlich diese Anlage arbeitet und vergleichte Herstellungskosten mit den eingesparten Stromkosten, um möglichst kurze Amortisationszeiten zu erzielen. Kraus Maschinenbau rechnete mit einer Durchschnittsleistung von 2 kW pro Anlage oder einer jährlichen Stromerzeugung von ca. 16.000 kWh, da das Wasser konstant Tag und Nacht fließt. Für die ca. 10.000 deutschen Abwasserreinigungsanlagen mit ihrem etwa 540.000 Kilometer Kanalnetz bieten innovative Wasserkraftanlagen ein großes Potential, um den eigenen Strombedarf teilweise zu decken und so die Abwasserreinigung klimafreundlicher und wirtschaftlicher zu gestalten. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Das oberschlächtige Wasserrad ist bei stark schwankenden Wassermengen zwischen 1l/s und 200l/s und Fallhöhen über 1 Meter wohl die beste Lösung zur Stromerzeugung aus Abwasser. Trotz Konstruktionshilfen in Form von Formeln, Skizzen und Fachliteratur sind die praktischen Versuche insbesondere zur Verkleinerung der Geometrie der Raddurchmesser unverzichtbar. Der Innovationsfonds ist besonders für kleine Unternehmen ein einzigartiges Instrument , damit eine zukunftsweisende Idee in ein reales Projekt umgesetzt werden kann.