Zurück zur Übersicht

Energie- und Qualitätsmanagement für nachhaltige Gebäude

Viele Städte haben ihn den vergangenen Jahren ausführliche Sanierungsmaßnahmen durchgeführt, um den Energieverbrauch der städtischen Gebäude zu reduzieren. Weil am Rhein investierte besonders stark in den Klimaschutz und hat unter anderem eine klimaneutrale Feuerwache errichtet, Heizungsnetze hydraulisch optimiert und innovative Heiz- und Lüftungstechnik in Schulen installiert. Gebäude energieeffizient zu planen oder zu sanieren garantiert jedoch noch nicht, dass beim Bau optimal gearbeitet wird und dass die Bewohner und Nutzer Energiesparpotentiale maximal ausnutzen. Der langfristige Betrieb von energieeffizienten Gebäuden ist noch wenig erforscht, obwohl neue Technologien und die Nutzer oftmals vor Herausforderungen stellen. Das Projekt der Stadt Weil setzt deshalb auf ein Energie- und Qualitätsmanagement für nachhaltige Gebäude um sicherzustellen, dass die Klimaziele aus der Planung in der Praxis auch umgesetzt werden.

Unter anderem wurden die Geothermieanlage der 2010 erbauten, klimaneutralen Feuerwache optimiert und die innovative Lüftung- und Heizsysteme verschiedener sanierter Gebäude auf ihre Nachhaltigkeit und Effizienz zu überprüft. Als Teil eines größeren Projektes der Deutschen Bundesstiftung Umwelt und unterstützt von der TU Braunschweig, konnte die Stadt dabei auf ein breites Expertenwissen zurückgreifen und die Ergebnisse verschiedener Bereiche, Städte und Regionen mit den eigenen Daten vergleichen. Das Projekt veranstaltete außerdem Workshops zu Themen energetische Sanierung, Trinkwasserhygiene oder Heizsysteme und einen Webservice für alle Teilnehmer, der Defizite aufzeigte und die Suche nach Lösungen vereinfachte.

Öffentliche Präsentationen machten die Ergebnisse dem lokalem Handwerk, Ingenieuren und Energieberatern zugänglich und haben dazu beigetragen, zukünftige Energiesparmaßnahmen noch nachhaltiger zu machen. Mit dem Projekt hat die Stadt Weil, ihren Energieverbrauch nochmals um 10-15 % reduziert. Durch den vielfältigen Ansatz und die verschiedenen untersuchten Gebäudetypen und Maßnahmenkataloge diente das Qualitätsmanagement auch anderen Städten als Vorbild.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Die Prüfprozesse haben sich im badenova‐Projekt grundsätzlich als effektiv erwiesen. Der Einsatz von temporären und mobilen Loggern z.B. für die Ermittlung von Systemtemperaturen und Stromlastgängen hat sich bewährt. Zur vertiefenden Analyse wird empfohlen, leicht verfügbare Daten zum Betriebszustand z.B. aus Funktionsbeschreibung oder DDC bei der Analyse zum Soll‐Ist‐Vergleich heranzuziehen.
  • Als wenig effektiv hat sich in diesem Projekt die Datenquelle Gebäudeautomation erwiesen. Die Verfügbarkeit der Daten außerhalb der Gebäudeautomation und präzise Spezifikationen sollte dringend angestrebt werden, um dem Gebäudebetreiber ein effektives Betriebsmonitoring zu ermöglichen.
  • Der Nutzen des Qualitätsmanagements ist auf Grund der am Bau fehlenden Serienfertigung nur schwer empirisch zu bewerten. Projekte zur Betriebsoptimierung im Bestand zeigen jedoch Amortisationszeiten für gering‐ und nicht‐investive Maßnahmen von weniger als einem Jahr. Damit ist ein effektives Qualitätsmanagement eine der wirtschaftlichsten Maßnahmen für energieoptimiertes Bauen.

Weiterführende Projekterkenntnisse finden Sie im Abschlussbericht.

Projektdaten

Projektnummer 2014-01
Projektart Forschung und Studien
Projektträger Stadt Weil am Rhein
Laufzeit Mai 2014 bis März 2016
Zuschuss 26.250

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

ARTHYMES Archaea Transform Hydrogen to Methane for Energy Storage
Offenburg

Methanisierung von Wasserstoff als Speicher für Überschussenergie

Wind- und Sonnenenergie stellen einen wachsenden Anteil am deutschen Strommarkt. Beide Energiequellen sind jedoch stark wetterabhängig, so dass die Einspeisung ins Stromnetz zwischen Überschüssen und Unterversorgung schwankt. Stromspeicher können diese Schwankungen ausgleichen, sind aber noch nicht flächendeckend vorhanden. Bisher kamen vor allem Pumpspeicherkraftwerke zum Einsatz, die aber allein den Speicherbedarf nicht decken können. Auch Elektroautos, zeigt ein vorheriges Innovationsfondsprojekt, eignen sich prinzipiell als Speicher für überschüssige Energie. Angesichts ihres nur langsam wachsenden Marktanteils sind auch sie bisher nicht als Stromspeicher im großen Maßstab geeignet. Das Erdgasnetz hingegen bietet eine Speicherkapazität von 200 TWh, ein Vielfaches der momentan benötigten etwa 15 TWh. Um elektrische Energie ins Gasnetz einzuspeisen, wird diese genutzt, um in einem elektrolytischen Prozess zuerst aus Wasser Wasserstoff zu gewinnen. Anschließend wird der Wasserstoff biologisch in Methan umgewandelt. Diese Technik ist jedoch bisher nur im Labormaßstab erprobt; die einzelnen Faktoren und beteiligten Mikroorganismen sind noch kaum erforscht. Das Projekt der Hochschule Offenburg untersuchte diesen Prozess der biologischen Methanisierung ausführlich und analysierte, inwiefern sich Wasserstoff als Cosubstrat für Biogasanlagen eignet. Biogas entsteht in einer anaeroben Fütterungskette, in der sich aus Substrat – also Energiepflanzen, Grünschnitt oder Abfallstoffen – zuerst Kohlendioxid und Wasserstoff und schließlich Methan bildet. Rohbiogas enthält allerdings immer noch 30 bis 50 Prozent CO2, das aufwändig ausgefiltert werden muss, bevor das Biogas ins Erdgasnetz eingespeist werden kann. Durch Zugabe von zusätzlichem Wasserstoff aus Überschussstrom zum Gärprozess kann auch das restliche CO2 zu Methan umgewandelt werden. Um dieses bisher nur im Labormaßstab erprobtes Verfahren der in situ-Methanisierung zu optimieren, erforschten die Offenburger Wissenschaftler verschiedene Verfahren, um den Wasserstoff in den Vergasungsprozess einzuschleusen, so dass er optimal durch die beteiligten Mikroorganismen, den Archaeen, verwertet wird, ohne diese zu beschädigen. Mit ihren weitreichenden Erfahrungen in der Biogasforschung analysierten die Forscher der Hochschule verfahrenstechnische, mikrobiologische, chemische und physikalische Aspekte der Methanisierung. Die Hochschule setzt sich hierbei die Entwicklung eines Moduls zum Ziel, dass nach Maßstabsübertrag in etwas 7000 deutschen Biogasanlagen integriert werden könnte. Das Projekt trägt so zur Lösung zweier Problemfelder bei: Zum einen bietet es große Speicherkapazitäten für Überschussenergie, zum anderen macht es Biogasanlagen ökologisch und ökonomisch effizienter, indem es den Substratbedarf reduziert. Weil das mit Methan behandelte Biogas kaum noch CO2 enthält, entfällt auch die aufwändige Aufbereitung, bevor das Gas ins Erdgasnetz eingespeist werden kann. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Durch Einbringen von Wasserstoff über blasenfreie Membranbegasung in Biogasanlagen kann ohne pH-Regulation die Methankonzentration im Rohbiogas auf 80-90 % gesteigert werden. Dabei steigt der pH-Wert an, wird aber noch von der Mikrobiologie toleriert. Die Wasserstoffkonzentration im Produktgas liegt bei wenigen Prozent. Der eingespeiste Wasserstoff wird nahezu vollständig umgesetzt. Methankonzentrationen von nahezu 100 % werden ohne pH-Regulation nur temporär erreicht, da der durch den CO2-Verbrauch auftretende extreme pH-Wert zu Schädigungen der Mikrobiologie führt. Ein Langzeitbetrieb mit solch hohen Methankonzentrationen ist jedoch bei pH-Regulation/Pufferung denkbar. Neben hochgasdurchlässigen, relativ teuren Membranen scheinen unter Berücksichtigung der Grenzwerte für die blasenfreie Begasung auch preisgünstigere Membranmaterialien geeignet zu sein. Die im Projekt getesteten Membranen zeigten kaum Biofilmbildung, so dass sie bei ausreichender Stabilität vermutlich auch längerfristig eingesetzt werden können.

Der naturnahe Wasserhaushalt als Leitbild in der Siedlungswasserbewirtschaftung – Analyse der Langzeitauswirkungen auf Grundwasserneubildung, Verdunstung und Abflussbildung im urbanen Raum
Freiburg - Landwasser

Ein Modell für den naturnahen Wasserhaushalt

Seit 1999 müssen Stadtplaner die urbane Wasserbewirtschaftung möglichst naturnah und umweltfreundlich gestalten. Für eine solche nachhaltige Wasserwirtschaft fehlten teilweise aber noch die Grundlagen. Bislang war es noch kaum erforscht, wie Regenwasser auf verschiedenen Siedlungsflächenverhalten versickert oder verdunstet, und wie sich diese Faktoren auf das städtische Mikroklima auswirken. Im Projekt des Lehrstuhls für Hydrologie der Universität Freiburg entstand deshalb ein Modell, das diese Faktoren für verschiedene Bebauungsarten analysierte und mit unbesiedelten Flächen im Umland verglich. Dafür kartierten die Wissenschaftler das Stadtgebiet von Freiburg und teilten es in verschiedene Oberflächenarten ein, z. B. Pflaster oder Asphalt, Häuser oder städtische Grünflächen ein. Auf verschiedenen Referenzflächen wurde über drei Jahre hinweg gemessen und festgehalten, wie dort Regenwasser verdunstet oder versickert, sich auf Stadtklima und Grundwasser auswirkt und wie effizient das Kanalsystem und bestehende Versickerungsmaßnahmen sind. Der Vergleich mit einer unbebauten Naturfläche im Umland erlaubt Rückschlüsse darauf, wie naturnah der Freiburger Wasserkreislauf ist. In Zusammenarbeit mit dem Eigenbetrieb Wasserwirtschaft der Stadt Freiburg und dem Ingenieurbüro Ernst & Co entstand so ein Instrument, das es zukünftig erlaubt, für einzelne Gebiete oder eine Stadt genaue Vorhersagen zu treffen. Eine Fallstudie in Landwasser ergänzte das Projekt. Aus diesen Erkenntnissen entwickelten die Forscher ein Model, das es auch anderen Städten erlaubt, ihre Wasserwirtschaft künftig nachhaltiger zu gestalten. Wesentliche Erkenntnisse: Die entwickelten Simulationswerkzeuge erlauben die zeitliche Dynamik des Wasserhaushaltes für die natürlichen, teilversiegelten und versiegelten Flächen, sowie für die dezentralen und zentralen Maßnahmen zur Versickerung von Niederschlag detailliert zu betrachten und in Ihrer Wirkung auf den gesamten Wasserhaushalt des Siedlungsraumes zu bewerten. Anhand des vorliegenden Modells lässt sich der Einfluss von Regenwasserbewirtschaftungsmaßnahmen auf den Wasserhaushalt innerhalb von Siedlungsräumen nun zusätzlich auch in seiner Abweichung vom Wasserhaushalt naturnaher Referenzflächen quantifizieren und bewertet werden. Das Modell ist in allen Siedlungen anwendbar. Die Verfügbarkeit von Wasser in Städten für die Verdunstung kann gezielt zur Verringerung der Erwärmung städtischer Innenräume durch den Klimawandel beitragen. Dazu ist jedoch die genaue Berechnung des Wasserhaushaltes aller Oberflächentypen, sowie zentraler und dezentraler Maßnahmen zur Regenversickerung notwendig.

Gärrestaufbereitung nach ARTOR-Verfahren
Offenburg

Kombinierte Gärresttrocknung und Abgasreinigung bei Biogasanlagen

Beim Vergären von Substrat in einer Biogasanlage bleibt der sogenannte Gärrest übrig, also eine Masse, die zwar energetisch ausgelaugt aber noch voller Nährstoffe ist. Deshalb ist der Gärrest ein wertvoller Dünger, den der Anlagenbetreiber jedoch zuerst platzaufwändig in Silos lagern muss. In vielen Biogasanlagen verbrennen Blockheizkraftwerke (BHKW) das Biogas, um so Strom und Wärme zu produzieren. Um mit ihren Abgasen die Grenzwerte für Luftschadstoffe einzuhalten, benötigen die BHKW oft teure Filter und Katalysatoren, die zudem häufig ausgetauscht werden müssen. Für beides hat die Firma Artor eine innovative Lösung entwickelt. Aus dem Gärrest wird ohne vorgeschalteter Fest-Flüssig-Trennung ein flüssiges Stickstoffkonzentrat mit geringem Volumen und ein mineralienreicher Feststoffdünger gewonnen. Die Anlage besteht aus zwei Einzelkomponenten. Die Erste entfernt das Ammoniak aus dem Gärrest und konzentriert es in einem Kondensat. Dieser Flüssigdünger erwies sich in ersten Feldversuchen als sehr pflanzenverträglich und wachstumsfördernd. In der zweiten Anlagenkomponente strömt das BHKW-Abgas durch den Gärrest. Dabei reichern sich das Formaldehyd und die Stickstoffoxide aus dem Abgas im Gärrest an. Während Stickstoff und Formaldehyd in der Luft zu den Schadstoffen zählen, dienen sie im Boden den Pflanzen als Nährstoff. Das Verfahren bietet noch einen weiteren Vorteil: Durch die Hitze aus dem Abgas verdunstet das in der Masse vorhandene Wasser. Das Ergebnis ist ein kompakterer, leichterer und mit pflanzenverfügbarer Stickstoffverbindung (Dünger) angereicherter Gärrest. Damit reichen kleinere Lagersilos aus und die Landwirte sparen beim Ausbringen auf die Felder Zeit und Kraftstoff. Nach ersten erfolgreichen Laborversuchen an der HS Offenburg entwickelte Artor eine Pilotanlage, optimierte die einzelnen Komponenten und entwickelte einen markttauglichen Prototypen. Für die Betreiber der etwa 8.000 Biogasanlagen in Deutschland bietet das Artorverfahren eine innovative Option um die Kombination Biogasanlage – BHKW – Düngung weiter zu optimieren. Das Konzept ist flexibel: Benötigen die Landwirte rund um eine Biogasanlage den Gärrest nicht als Dünger, kann ihn die Anlage auch zu einem festen Brennstoff für Heizkraftwerke trocknen. Drei wesentliche Projektergebnisse: Die Entstickung des Gärrestes verringert den Stickstoffeintrag in die Umwelt. Der gewonnen Flüssigdünger erwies sich in ersten Feldversuchen als sehr pflanzenverträglich und wachstumsfördernd. Durch die Kombination von Biogasanlage und Gärrestaufbereitung zu Dünger entsteht eine regionale Wertschöpfungskette mit nachhaltigem Nährstoffmanagement und flexibler Nutzung.