Zurück zur Übersicht

Innovative Wasserkraft für Kläranlagen

Abwasser zu reinigen ist energieintensiv und damit relativ teuer. Gleichzeitig bieten die rund 10.000 deutschen Kläranlagen mit ihrem komplexen Kanal- und Röhrennetz ein ungenutztes Wasserkraftpotential. Dieses blieb aber bisher aus technischen Gründen weitgehend ungenutzt, denn herkömmliche Wasserkraftanlagen eignen sich kaum für die besonderen Gegebenheiten einer Kläranlage. Dazu zählen unter anderem schwankende Abwassermengen und hohe Fallhöhen in engen Röhren von oftmals nur anderthalb Metern Durchmesser. Aufbauend auf zwei erfolgreichen Prototypen entwickelt die Ühlinger Firma Karl Kraus Maschinenbau - Umwelttechnik eine Wasserkraftanlage, die - an diese speziellen Erfordernisse angepasst - ohne bauliche Veränderungen eingebaut werden kann. Mehrere hintereinander geschaltete, oberschlächtige Wasserräder nutzen in den engen Röhren, Schächte und Kanälen die Wasserkraft optimal. Dabei ist besonders der ungestörte Wasserstrom in und zwischen den Wasserrädern ein Kernpunkt der Entwicklungen. Hergestellt aus rostfreiem Stahl, eignen sich die Wasserräder sowohl für gereinigtes als auch für Schmutzwasser. Sie sind mit besonderen Stauschildern ausgestattet, die unabhängig vom Wasserfluss immer die gleiche Staumenge halten.

Kraus Maschinenbau testete ein solches System bereits auf kleinem Versuchsmaßstab und erprobt nun eine Pilotanlage in der Kläranlage Waldshut-Tiengen. Das Projekt analysierte, wie wirtschaftlich diese Anlage arbeitet und vergleichte Herstellungskosten mit den eingesparten Stromkosten, um möglichst kurze Amortisationszeiten zu erzielen. Kraus Maschinenbau rechnete mit einer Durchschnittsleistung von 2 kW pro Anlage oder einer jährlichen Stromerzeugung von ca. 16.000 kWh, da das Wasser konstant Tag und Nacht fließt. Für die ca. 10.000 deutschen Abwasserreinigungsanlagen mit ihrem etwa 540.000 Kilometer Kanalnetz bieten innovative Wasserkraftanlagen ein großes Potential, um den eigenen Strombedarf teilweise zu decken und so die Abwasserreinigung klimafreundlicher und wirtschaftlicher zu gestalten.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Das oberschlächtige Wasserrad ist bei stark schwankenden Wassermengen zwischen 1l/s und 200l/s und Fallhöhen über 1 Meter wohl die beste Lösung zur Stromerzeugung aus Abwasser.
  • Trotz Konstruktionshilfen in Form von Formeln, Skizzen und Fachliteratur sind die praktischen Versuche insbesondere zur Verkleinerung der Geometrie der Raddurchmesser unverzichtbar.
  • Der Innovationsfonds ist besonders für kleine Unternehmen ein einzigartiges Instrument , damit eine zukunftsweisende Idee in ein reales Projekt umgesetzt werden kann.

Projektdaten

Projektnummer 2014-02
Projektart Bau und Anwendung
Projektträger Karl Kraus Maschinenbau- und Umwelttechnik
Laufzeit April 2014 bis April 2016
Zuschuss 27.750

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Optimierung der Verstromung von veränderlichen Schwachgasen im kleinen Leistungsbereich
Gengenbach

Optimierte Verstromung im Holzvergaser-BHKW

Obwohl es Holzvergaser schon seit dem späten 19. Jahrhundert gibt und sie besonders in Kriegszeiten beliebt waren, sind heute nur relativ wenige Modelle im Einsatz. Dabei sind sie gut dafür geeignet, mit nachwachsenden Rohstoffen Strom und Wärme zu produzieren. Unterstützt durch den Innovationsfonds stellte der Geflügelhof Zapf bei Gengenbach 2012 seine Energieversorgung auf drei Holzvergaser-BHKW um, mit dem Ziel, die Verstromung zu optimieren. Unter Hitzeeinwirkung wandelt die Anlage das Holz in ein schwaches Brenngas um, das als Brennstoff für das BHKW dient. Pilotanlagen wie die in Gengenbach helfen, die bestehende Technik zu verbessern und Anlagen marktfähiger zu machen. So stellte sich dort im Laufe der ersten Betriebsjahre heraus, dass die Motorentechnik herkömmlicher Modelle nicht ideal auf den Betrieb mit schwachem Holzgas abgestimmt ist. Das führt zu zwei Problemen: Verunreinigungen im Motor und eine ungleichmäßige Verbrennung. Durch den Spalt zwischen Kolben und Zylinder entweicht ein Teil des Brenngases, verunreinigt das Motorenöl, und führt zu einem hohen Verschleiß und Wartungsbedarf. Im Projekt kamen als Alternativlösung Graphitkolben zum Einsatz, die bisher vor allem im Rennsport eingesetzt wurden, bei Holzgas-BHKWs jedoch noch unerprobt waren. Metallinfiltriertes Graphit ist ein besonders präziser Werkstoff, weil es extrem widerstandsfähig ist und sich unter Wärmeeinfluss kaum ausdehnt. Außerdem verfügen Graphitkolben über selbstschmierende Eigenschaften, die Verschleiß, Wartungsbedarf und Kolbenkühlung verringern. Herkömmliche Motoren für kleinere BHKWs kommen meist aus dem KFZ-Bereich und sind für genormte Brennstoffe mit konstanten Eigenschaften ausgelegt; Holzgas hingegen ist ein Schwachgas mit schwankendem Energiegehalt. Verbrennt man Holzgas in solchen Motoren, verbrennt es unvollständig, was den Wirkungsgrad verringert und die Abgaswerte erhöht. Um den Betrieb zu optimieren, passten die Projektpartner deshalb die Motordrehzahl variabel an die Gasqualität an, indem sie das BHKW von der Netzfrequenz entkoppeln. So kann das Gas je nach Qualität unterschiedlich lange in der Brennkammer verbleiben. Das Projekt entwickelte hierfür eine spezielle Steuerungstechnik, die die Drehzahl trotz schwankender Gasqualität möglichst konstant hält. Die Hochschulen Mittelhessen und Offenburg begleiteten den Betrieb mit einem engmaschigen Monitoring und einer anschließenden Evaluation. Die Ergebnisse tragen dazu bei, den Einsatz von ungenormten Biogasen durch innovative Werkstoffe und Betriebsmethoden effizienter zu machen. Wesentliche Erkenntnisse •Grundlegende Probleme von Graphitkolben konnten erkannt und behoben werden, insbesondere hinsichtlich der zu verbessernden Fertigungstoleranzen und dem Entwicklungsbedarf bei den Kolbenringen. •Das Projekt erzielte eine verbesserte Verbrennung und damit einen verbesserten Wirkungsgrad in der Stromproduktion und verringerte Abgaswerte. Das macht ähnliche Anlagen vor allem an Standorten ohne geeignete Wärmeabnahme interessant. •Das gewonnene Fachwissen kann zukünftig anderen Betreibern helfen, neue Lösungsansätze bei Holzvergaseranlagen zu finden.