Zurück zur Übersicht

Innovative Wasserkraft für Kläranlagen

Abwasser zu reinigen ist energieintensiv und damit relativ teuer. Gleichzeitig bieten die rund 10.000 deutschen Kläranlagen mit ihrem komplexen Kanal- und Röhrennetz ein ungenutztes Wasserkraftpotential. Dieses blieb aber bisher aus technischen Gründen weitgehend ungenutzt, denn herkömmliche Wasserkraftanlagen eignen sich kaum für die besonderen Gegebenheiten einer Kläranlage. Dazu zählen unter anderem schwankende Abwassermengen und hohe Fallhöhen in engen Röhren von oftmals nur anderthalb Metern Durchmesser. Aufbauend auf zwei erfolgreichen Prototypen entwickelt die Ühlinger Firma Karl Kraus Maschinenbau - Umwelttechnik eine Wasserkraftanlage, die - an diese speziellen Erfordernisse angepasst - ohne bauliche Veränderungen eingebaut werden kann. Mehrere hintereinander geschaltete, oberschlächtige Wasserräder nutzen in den engen Röhren, Schächte und Kanälen die Wasserkraft optimal. Dabei ist besonders der ungestörte Wasserstrom in und zwischen den Wasserrädern ein Kernpunkt der Entwicklungen. Hergestellt aus rostfreiem Stahl, eignen sich die Wasserräder sowohl für gereinigtes als auch für Schmutzwasser. Sie sind mit besonderen Stauschildern ausgestattet, die unabhängig vom Wasserfluss immer die gleiche Staumenge halten.

Kraus Maschinenbau testete ein solches System bereits auf kleinem Versuchsmaßstab und erprobt nun eine Pilotanlage in der Kläranlage Waldshut-Tiengen. Das Projekt analysierte, wie wirtschaftlich diese Anlage arbeitet und vergleichte Herstellungskosten mit den eingesparten Stromkosten, um möglichst kurze Amortisationszeiten zu erzielen. Kraus Maschinenbau rechnete mit einer Durchschnittsleistung von 2 kW pro Anlage oder einer jährlichen Stromerzeugung von ca. 16.000 kWh, da das Wasser konstant Tag und Nacht fließt. Für die ca. 10.000 deutschen Abwasserreinigungsanlagen mit ihrem etwa 540.000 Kilometer Kanalnetz bieten innovative Wasserkraftanlagen ein großes Potential, um den eigenen Strombedarf teilweise zu decken und so die Abwasserreinigung klimafreundlicher und wirtschaftlicher zu gestalten.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Das oberschlächtige Wasserrad ist bei stark schwankenden Wassermengen zwischen 1l/s und 200l/s und Fallhöhen über 1 Meter wohl die beste Lösung zur Stromerzeugung aus Abwasser.
  • Trotz Konstruktionshilfen in Form von Formeln, Skizzen und Fachliteratur sind die praktischen Versuche insbesondere zur Verkleinerung der Geometrie der Raddurchmesser unverzichtbar.
  • Der Innovationsfonds ist besonders für kleine Unternehmen ein einzigartiges Instrument , damit eine zukunftsweisende Idee in ein reales Projekt umgesetzt werden kann.

Projektdaten

Projektnummer 2014-02
Projektart Bau und Anwendung
Projektträger Karl Kraus Maschinenbau- und Umwelttechnik
Laufzeit April 2014 bis April 2016
Zuschuss 27.750

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Errichtung einer Außenbeleuchtung mit Mustercharakter und implementiertem Lichtmanagementsystem
Freiburg

Lichtmanagementsystem für LED-Außenbeleuchtung

Wegen ihrer Langlebigkeit und dem geringen Energieverbrauch ersetzen LED-Leuchten vielerorts herkömmliche Außenbeleuchtung. Besonders effizient sind LED-Leuchten in Kombination mit Lichtmanagementsystemen, die zentral Wartung und Energieverbrauch steuern. Solche Systeme sind aber noch kaum im Einsatz. bnNETZE installiert deshalb eine Musteranlage auf dem Hauptparkplatz der badenova in Freiburg, um so langfristige Erfahrungswerte zu gewinnen. Dabei kommt das Telemanagementsystem CityTouch der Firma Philips zum Einsatz, das bisher nur für einzelne Pilotanlagen verfügbar ist. Über eine zentrale Software und Funkverbindung können die Betreiber jede einzelne Lampe steuern, überwachen, und ihre Helligkeit an die jeweiligen Erfordernisse anpassen. So kann das System die Lichtstärke je nach Tageszeit regulieren oder bestimmte Bereiche nach Bedarf schwächer oder stärker ausleuchten. Die engmaschige Überwachung erlaubt es auch, Wartungsarbeiten langfristig vorauszuplanen oder ausfallende Lampen sofort zu ersetzen. Messwerte zu Energieverbrauch und -einsparungen stehen jederzeit zur Verfügung. Das Projekt testet verschiedene LED-Leuchten und wertet im Monitoringzeitraum Daten aus zu Ausfällen, Lebensdauer und Energieverbrauch. In mehreren Veranstaltungen präsentiert bnNETZE das System und ihre Erfahrungen und bietet mit ihrer Musteranlage interessierten Firmen und Gemeinden eine Anlaufstelle. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Die Technik und die nötigen Nachrüstungen dazu sind noch relativ kostenintensiv und aufwendig. Bis die Anlage funktionsfähig ist bedarf es eines hohen Aufwandes und technischer Unterstützung des Herstellers. Allerdings ist auch eine erhebliche Einsparung des elektrischen Energiebedarfs möglich. Die Kompatibilität der verschiedenen Leuchten zur Steuerung und Abfragen der Gegebenheiten ist noch stark eingeschränkt und bedarf noch einer Verbesserung. Die Prozessvereinfachungen, Steuerung, Dokumentation und die Auswertungs-möglichkeiten des Systems sind sehr gut und würden eine höhere Produktivität zur Folge haben.

Neubau Institut für Umweltmedizin und Krankenhaushygiene
Freiburg

Forschungsbau im Passivhausstandard

Gebäude nach ökologischen Kriterien zu errichten, setzt sich immer mehr durch. Meistens handelt es sich dabei jedoch bisher um Wohn- oder Firmengebäude. Weil sie besonders strenge technische oder hygienische Normen einhalten müssen, ist es bei Forschungsinstituten und Universitäten dagegen schwieriger, energieeffizient zu bauen. Der Neubau des Instituts für Umweltmedizin und Krankenhaushygiene, zuvor in verschiedenen Gebäuden der Universitätsklinik Freiburg untergebracht, ist ein fortschrittliches Beispiel auf diesem Gebiet. Im Passivhausstandard erbaut, weist es mehrere innovative Ansätze auf, darunter eine Lüftungsanlage, die dank moderner Technik die Luft nur halb so oft wechselt wie in der Norm vorgeschrieben und dennoch die strengen Kriterien für den Umgang mit gefährlichen Stoffen erfüllt. Weil der Neubau natürliche Ressourcen geschickt nutzt, kommt das neue Institut auch beim Kühlen und Wärmen mit weniger Energie aus als üblich: Hinter seiner Glassfassade befindet sich eine Brettstapelwand, hinter der die Sonne die Luft erwärmt. Im Winter leitete das System die so erwärmte Luft in die Räume. Im Sommer durchläuft die Zuluft Erdregister, deren Wärmetauscher sie abkühlen. In den Betondecken eingebaute Rohrschlangen kühlen oder wärmen und halten das Gebäude auf einer nahezu konstanten Temperatur. Als Vorbild für andere Universitätsgebäude zeigt der Neubau, dass es auch mit den weit reichenden Sicherheitsvorschriften im Forschungsbereich möglich ist, klimafreundlich zu bauen.