Zurück zur Übersicht

Pflanzenkohle im Weinbau

In der Landwirtschaft werden häufig stickstoffhaltige Dünger eingesetzt. Außerdem wird durch Bodenbearbeitungsmaßnahmen die Freisetzung von Stickstoff aus dem Boden, insbesondere aus dem Humus, gefördert. Je nach Bodenbeschaffenheit und Wetter wird dabei Nitrat in tiefere Bodenschichten und damit ins Grundwasser verlagert. Auch wenn Landwirte heutzutage wesentlich sparsamer und verantwortungsvoller mit Dünger umgehen, bleiben erhöhte Nitratwerte im Grundwasser ein Problem für die Wasserversorger. Badenova unterstützte schon mehrere Projekte, um die Nitratbelastung des Grundwassers zu reduzieren.

In diesem Projekt wurde untersucht, ob sich Pflanzenkohle dazu eignet, Nitrat im Boden zu binden, so dass es verstärkt in den oberen Bodenschichten verbleibt und dennoch gut für die Pflanze verfügbar ist. Das Projektteam des Büros für Nachhaltigkeits-Projekte und des Staatlichen Weinbauinstituts Freiburg nutzt hierfür Pflanzenkohle-Kompost, der für den Öko-Anbau geeignet ist. Der Spezialkompost stammte aus einer vorherigen Kooperation zwischen Dr. C. Holweg und dem ROM-Kompostwerk. Für die Verkohlung selbst wurde das BiGchar-Verfahren aus Australien verwendet, das sich bereits in einem vorherigen Innovationsfondsprojekt bewährte. Als Material zur Herstellung der Kohle diente ausschließlich Landschaftspflegeholz und Gehölz aus Naturschutz- oder Rebflächen.

Pflanzenkohle entsteht, wenn Biomasse – d.h. Holz oder andere pflanzliche Ausgangsstoffe – verkohlt wird. Das Herstellungsprinzip auf Grundlage von Hitzezufuhr und Sauerstoffentzug entspricht ganz dem von Holzkohle. In den vergangenen Jahren wurden die nützlichen aber auch die begrenzenden Eigenschaften verschiedener Pflanzenkohlen untersucht. Die gute Wasser- und Nährstoffbindekapazität der Pflanzenkohle führen zu Vorteilen für den Boden. Auch das Argument der Kohlenstoffsenke wird häufig genannt, da Pflanzenkohle durch ihre sehr lange Haltbarkeit CO2 lange gebunden hält.

Wie genau sich Pflanzenkohle auf den Nitrathaushalt des Bodens und der Pflanzen in Rebenjunganlagen auswirkt, war zu Projektbeginn noch unbekannt. Das Projekt erforschte dies exemplarisch für den Weinbau, einer für Südbaden typischen landwirtschaftlichen Kultur. Auf Flächen der Wein- und Sektgüter Norbert Helde in Sasbach-Jechtingen, sowie Andreas Dilger in Freiburg St. Georgen und Heinrich Gretzmeier in Merdingen erprobte das Projektteam über drei Jahre hinweg verschiedene Versuchsanordnungen, maß regelmäßig die Nitratgehalte in verschiedenen Bodentiefen und verfolgte die Effekte auf Pflanzenwachstum und Bodenqualität. Besonders interessant war es herauszufinden, ob es mögliche Synergieeffekte zwischen Pflanzenkohle und Kompost gibt, wenn beide gemeinsam ausgebracht werden, denn die Pflanzenkohle speichert sowohl die im Kompost enthaltenen als auch die im Boden frei werdenden Nährstoffe und macht sie für die Wurzeln der Rebe verfügbar. Gleichzeitig ist so weniger Pflanzenkohle nötig. Ab April 2017 kam eine Fläche in Heitersheim (Julian Zotz) hinzu, auf der pure Pflanzenkohle zum Vergleich diente.

Im Weinbau ist das Risiko, dass Nitrat ins Grundwasser ausgewaschen wird, in den Jahren und Jahrzehnten der Ertragsanlage bei der heutzutage üblichen Bewirtschaftung zwar gering, aber vor allem nach der Rodung alter Anlagen und im Pflanzjahr deutlich erhöht. Durch das Einbringen eines Pflanzenkohle-Substrates kurz vor oder während der Pflanzung von Reben kann eventuell der mögliche Nitrataustrag in das Grundwasser reduziert oder unterbunden werden. Um die Kosten für die Winzer gering zu halten, wurden die Substrate nur entlang der Rebzeilen, Gassen oder direkt ins Pflanzloch eingebracht. Als nitratbindender Stoff, der bei richtiger Anwendung der pflanzlichen Aufnahme nicht entgegensteht, bietet Pflanzenkohle einen Weg für einen nachhaltigeren Wein- und sonstigen Pflanzenbau, effizienteren Einsatz von Düngemitteln und reineres Grundwasser. Fachveranstaltungen und Begehungen auf den Versuchsflächen informierten über Fortschritte und Ergebnisse. Die drei wesentlichen Erkenntnisse aus dem Projekt sind:

  • Im 1. Jahr der Rebenneuanlage bewirkte Pflanzenkohle eine N-Retention über die Wintermonate (im Kaiserstuhl, Jechtingen, bei einem Hektaraufwand von 7,2 t). Das Auswaschungspotenzial von Nitrat in das Grundwasser ist damit geringer. Die Wirkung dauerte in den Folgejahren an.
  • Im 2. Standjahr wurden höhere Gehalte an N-Verbindungen im Most gemessen, die für die alkoholische Gärung und die Weinqualität wichtig sind. Dass hierfür schon eine Pflanzenkohlemenge von 7,2 t/ha ausreicht, die nur bei Rebzeilen nötig ist, bedeutet ökonomische Vorteile.
  • Bei hoher Pflanzenkohledosis waren die Bodenwassergehalte deutlich erhöht. Gemahlen nimmt Pflanzenkohle mehr Wasser auf als ungemahlen. Die Vorbehandlung mit Grünschnitt-Kompost und eine tiefe Einarbeitung in den Boden (z.B. per Spatenmaschine) verbessert die Effektivität der Pflanzenkohleanwendung.

Wie Rebstockkohle direkt im Feld durch einfachste Methoden zu Pflanzenkohle umgesetzt und dem Boden rückgeführt werden kann, zeigt ein erster Praxistest vom Februar 2019 bei Freiburg. Die Idee ist, den Aufwand über eine CO2-Kompensation zu tragen. Den Artikel dazu aus der DER WINZER 06/2019 finden Sie unter Downloads.

Projektdaten

Projektnummer 2016-01
Projektart Forschung und Studien
Projektträger Nachhaltigkeits-Projekte, Dr. Carola Holweg
Laufzeit April 2016 bis Juni 2019
Zuschuss 79.901

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Unterstützung der Hydrolyse durch aerobe Produktion von Enzymen unter Verwendung von Gärresten in einer Biogasanlage
Offenburg

Enzymvorstufe verbessert Biogasproduktion

Bei Energiepflanzen der zweiten Generation nutzt man zunehmend nicht nur Teile sondern die gesamte Pflanze. Dies bedeutet jedoch auch, dass zunehmend cellulosehaltige Substrate in die Biogasanlagen gelangen. Cellulose ist Hauptbestandteil pflanzlicher Zellwände und besteht aus Kohlenhydraten, welche die Mikroorganismen nur schlecht oder schwer abbauen können. Die Forschung konzentriert sich deshalb darauf, diese Kohlenhydrate durch Hydrolyse – d.h. eine chemische Spaltung mit Wasser - besser zu zersetzen. Dafür kann man das Substrat beispielsweise mechanisch besser zerkleinern oder Druck und Temperatur in den Gärbehältern verändern. Die Hochschule Offenburg verfolgt einen dritten Weg: Sie setzt hydrolytisch wirkende Enzyme ein – ein Ansatz, der andernorts bereits erfolgreich erprobt wurde. Anstatt ständig neue Enzyme zuzusetzen, zielte man in Offenburg darauf, sie im Gärprozess selbst fortlaufend herzustellen. Dazu trennten die Forscher einen Nebenfermenter ab und füllten ihn mit einem Kultivierungsmedium aus einem Teil Gärrest sowie einem cellulosehaltigem Teilstrom. Der mineralstoffreiche Gärrest versorgt die enzymproduzierenden Pilze und Bakterien mit Nährstoffen, die Cellulose sorgt für die notwendige Stärke. Die Wärme aus dem Hauptfermenter sichert die notwendige Temperatur. Das nun enzymhaltige Gemisch fließt dann später wieder dem Hauptfermenter zu. Ziel des Projektes war es, Pilze und Bakterien zu identifizieren, die thermophil wachsen und besonders gut die gewünschten Enzyme produzieren. Anschließend entwickelten die Forscher Analyseparameter und optimieren die Zusammensetzung von Substrat und Kultivierungsmedium. Nach der Wirtschaftlichkeitsberechnung entwickelten sie dann ein Model um die Fermentationsstufe mit Enzymeinsatz vom Labor auf größere Anlagen zu übertragen. Das Offenburger Model bietet mehrere Vorteile für viele ähnliche Biogasanlagen in Deutschland: Die Ausbeute an Biogas steigt während gleichzeitig bisher ungenutzte cellulosehaltige Substrate zum Einsatz kommen können. Durch die Enzyme verbleibt das Substrat außerdem kürzer im Hauptfermenter. Weil der Gärrest als Kultivierungsmedium dient, können die Anlagenbesitzer außerdem ihre Lager verkleinern.

Realisierung eines "virtuellen" PV-Kraftwerkprototyps im badenova Stromnetz für die Einsatzplanung von regenerativen Stromgeneratoren und dezentralen KWK-Anlagen
Freiburg

Virtuelles Kraftwerk

Seit der Gesetzgeber 1998 den Strommarkt liberalisierte, hat sich dieser stark verändert Neben den großen kommerziellen Anbietern speisen, unterstützt von diversen Förderprogrammen und dem erneuerbare Energien-Gesetz, auch immer mehr gewerbliche und private Kleinanlagen ihren aus regenerativen Quellen erzeugten Strom ins Netz ein. Die zahlreichen dezentralen, unregelmäßig produzierenden BHKW, Wind- ,Wasserkraft- oder Solarstromanlagen machen es für die Netzbetreiber zunehmend schwierig, die jeweils verfügbare Strommenge optimal vorherzusagen und zu steuern. Die Folge sind beispielsweise unerwünschte Stromspitzen. Ein Forschungsvorhaben von badenova und dem Freiburger Fraunhofer Institut für solare Energiesysteme vernetzte deshalb die dezentralen Anlagen im badenova-Netz zu einem ‚virtuellen Kraftwerk’, dass die einzelnen Standorte zu einem effizienterem, besser koordinierten System zusammenfasst. Erstmals erprobten die Wissenschaftler ihre erarbeiteten Konzepte und Algorithmen in einem größeren Verteilnetz, in dem alternative Energiequellen stark vertreten sind. Anhand von Lastverläufen und Wetterprognosen erarbeitete das Team einen Betriebsführungsassistenten für die Leitwarten der Verteilnetzbetreiber wie Badenova. Diese stehen als Schnittstelle zwischen dem Verbraucher und dem dezentral erzeugten Strom. Indem es den Leitwarten hilft, das System effektiver zu steuern, machen sie das Netz stabiler und erlauben es, flexibler auf den Strommarkt zu reagieren. Mehr Informationen im Abschlussbericht und auf der Homepage des Fraunhofer ISE .