Zurück zur Übersicht

Thermoelektrische Generatoren im Hochtemperaturbereich für BHKW

Wie wirtschaftlich ein BHKW ist, hängt wesentlich von dessen elektrischem Wirkungsgrad ab. Wärmetauscher mit thermoelektrischen Generatoren können aus dem heißen Abgas des BHKWs zusätzlich Strom gewinnen und damit den Wirkungsgrad erhöhen. Thermoelektrische Generatoren wandeln Wärmeströme zwischen einer warmen und einer kalten Seite in elektrische Energie um. Sie sind robust, weitgehend wartungsfrei und langlebig, jedoch eigneten sich herkömmliche Generatoren nur für Temperaturen bis 200 °C. So bleibt die Wärmeenergie aus dem Abgasstrom ungenutzt. Das Fraunhofer Institut für physikalische Messtechnik (IPM) hat in den vergangenen Jahren erstmals Module entwickelt, die sich für Temperaturen bis 550 °C eignen. Zusammen mit der Firma Schleif Automation, spezialisiert auf den innovativen Anlagenbau, entwickelt das IPM einen thermoelektrischen Generator, der parallel zum vorhandenen Wärmetauscher die BHKW-Abwärme nutzt. Hierdurch kann neben der reinen Brauchwassererwärmung zusätzlich mit Hilfe des Wärmetauschers elektrischer Strom generiert werden.

Das Projektteam simuliert zunächst das Verhalten des thermoelektrischen Wärmetauschers bei Betrieb im Abgasstrom eines BHKWs, um eine möglichst hohe Ausbeute an elektrischer Leistung zu erzielen. Danach wird ein eigens optimierter thermoelektrischer Wärmetauscher hergestellt und in einem von badenova betriebenen Schleif-BHKW eingesetzt. Die anfallenden Daten integrieren die Forscher in die BHKW-Steuerungssoftware, um einen reibungslosen und effektiven Betrieb zu garantieren. Nach dieser Testphase kommt der Wärmetauscher in einem von badenova betriebenen Schleif-BHKW zum Einsatz. Die Forscher rechnen damit, dass ihr System den elektrischen Wirkungsgrad der BHKW um etwa 3 % steigert. In Zukunft könnten solche thermoelektrische Generatoren nicht nur in BHKWs, sondern auch in Fahrzeugen Verwendung finden und so dazu beitragen Treibstoff und CO2 einzusparen.

Projektdaten

Projektnummer 2014-07
Projektart Forschung und Studien
Projektträger Fraunhofer Institut für Physikalische Messtechnik
Laufzeit Mai 2014 bis April 2020
Zuschuss 245.220

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Energienetzmanagement dezentraler, wärmegeführter BHKW
Offenburg

Ein intelligentes Netz für BHKW

Wenn mehr und mehr dezentrale Wind-, Wasser- und Photovoltaikanlagen Strom ins Netz einspeisen, müssen Netzbetreiber flexibel reagieren, um Überlastungen oder Engpässe zu verhindern. So genannte demand-response Systeme nutzen dafür zu- und abschaltbare Elemente wie beispielsweise BHKWs. Für die Betreiber von BHKWs jedoch ist es am wirtschaftlichsten, wenn ihre Anlagen durchgehend laufen. In drei Teilprojekten entwickelte das Institut für Energiesystemtechnik der Hochschule Offenburg ein Energienetzmanagement, das beide Ziele vereint. Dazu erstellten sie ein Netzmanagement am Geflügelhof Zapf in Gengenbach. Dort stellte der Lebensmittelbetrieb in einem weiteren Innovationsfondprojekt seine Energieversorgung auf drei Holzvergasern um. Die Hochschule baute zunächst ein Messsystem auf, erfasste, wie viel Energie die Produktion überhaupt benötigt und modellierte mit Hilfe spezieller Software ein Netz, das flexibel auf Strom- und Wärmebedarf reagieren kann. Im Testbetrieb entstand so ein Modell, das die Wissenschaftler anschließend auf andere Kleinnetze anwenden können. Für die Stadt Offenburg erstellten die Wissenschaftler ein weiteres System, um das städtische Teilnetz aus fünf BHKWs und kommunalem Gebäudepool wirtschaftlich und ressourcenschonend zu betreiben. Über die bereits vorhandene Gebäudeautomation wurde gemessen, wie viel Energie aus BHKW und Netzstrom einfloss und bezogen auch Wetterprognosen und mögliche Speicher mit ein. Ziel war es, durch eine zentrale Steuerung die BHKWs möglichst ununterbrochen zu betreiben und ihre Energie im Netz optimal zu nutzen. Bei Bedarf könnten solche intelligenten Kleinnetze in Zukunft in größere Netzverbunde integriert werden ohne die lokalen Betreiber einzuschränken. Kombiniert mit den Ergebnissen aus den beiden anderen Teilprojekten entwickelte die Hochschule schließlich ein eigenes Stromnetz für Lehre und Forschung, mit verschiedenen Energiequellen sowie thermischen und chemischen Speichern. Die Hochschule baute so ihre Kompetenzen in der Systemanalyse aus und zeigt neue Wege auf, um Energienetze optimal zu betreiben. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Im Nachhinein muß das Projekt als sehr ambitiös eingestuft werden, konnte jedoch nach mehreren Verlängerungen erfolgreich abgeschlossen werden. Dabei wurde der notwendige Umfang den ein komplexes Energienetzmanagement fordert sehr deutlich. Dies gilt insbesondere dann, wenn mehrere innovative Komponenten und Verfahren zum Einsatz kommen. Schritte zur Optimierung der automations- und energiemeßtechnischen Ausrüstung wurden unternommen, um Labornetze mit Schnittstellen zu versehen, die Smart Grid – Funktionen erst ermöglichen. Es zeigte sich, dass viele verfügbare Produkte langfristig nicht für den Betrieb in flexiblen Netzen geeignet sind. Den Partnern stehen nun gut ausgerüstete Reallabore zur Verfügung, um Microgrids im Sinne von Smart Grids zu vernetzen und vernetzt zu untersuchen. Mit Weiterentwicklungen bei modellbasierten Prognosen und Algorithmen wurden wichtige Schritte zur Validierung gemacht. Die Arbeit werden fortgesetzt und sind Teil aktueller Forschungsaufgaben.