Zurück zur Übersicht

Virtuelles Kraftwerk

Seit der Gesetzgeber 1998 den Strommarkt liberalisierte, hat sich dieser stark verändert

Neben den großen kommerziellen Anbietern speisen, unterstützt von diversen Förderprogrammen und dem erneuerbare Energien-Gesetz, auch immer mehr gewerbliche und private Kleinanlagen ihren aus regenerativen Quellen erzeugten Strom ins Netz ein. Die zahlreichen dezentralen, unregelmäßig produzierenden BHKW, Wind- ,Wasserkraft- oder Solarstromanlagen machen es für die Netzbetreiber zunehmend schwierig, die jeweils verfügbare Strommenge optimal vorherzusagen und zu steuern. Die Folge sind beispielsweise unerwünschte Stromspitzen.

Ein Forschungsvorhaben von badenova und dem Freiburger Fraunhofer Institut für solare Energiesysteme vernetzte deshalb die dezentralen Anlagen im badenova-Netz zu einem ‚virtuellen Kraftwerk’, dass die einzelnen Standorte zu einem effizienterem, besser koordinierten System zusammenfasst. Erstmals erprobten die Wissenschaftler ihre erarbeiteten Konzepte und Algorithmen in einem größeren Verteilnetz, in dem alternative Energiequellen stark vertreten sind. Anhand von Lastverläufen und Wetterprognosen erarbeitete das Team einen Betriebsführungsassistenten für die Leitwarten der Verteilnetzbetreiber wie Badenova. Diese stehen als Schnittstelle zwischen dem Verbraucher und dem dezentral erzeugten Strom. Indem es den Leitwarten hilft, das System effektiver zu steuern, machen sie das Netz stabiler und erlauben es, flexibler auf den Strommarkt zu reagieren.

Mehr Informationen im Abschlussbericht und auf der Homepage des Fraunhofer ISE.

Projektdaten

Projektnummer 2005-08
Projektart Forschung und Studien
Projektträger Fraunhofer ISE, Freiburg
Laufzeit bis Februar 2009
Zuschuss 115.000

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Wassergestützte Latentwärmespeicher in Putz- und Dünnestrichsystemen
Freiburg

Innovativer Putz reguliert die Gebäudetemperatur

Während unsanierte Altbauten immer noch zuviel Energie für Heizen und Kühlen verbrauchen, versucht man Neubauten inzwischen thermisch träge zu errichten. Das heißt, dass solche Gebäude nur langsam auf die Umgebungstemperatur reagieren. Sie heizen sich im Sommer also nicht so schnell auf oder können im Winter gespeicherte Wärme über einen längeren Zeitraum abgeben. Dabei helfen neben einer guten Isolierung spezielle, innovative Wärmespeichermaterialien. Zusammen mit dem Fraunhofer Institut für solare Energiesysteme (ISE) untersuchte die Maxit Deutschland GmbH, wie sich mikroverkapseltes Paraffin für diesen Zweck eignet. Die Paraffinkugeln gehören zu den sogenannten Phasenwechselmaterial, weil sie, umhüllt von einer Mikrokapsel, je nach Temperatur ihren Zustand von flüssig zu fest ändern. Wenn die Kugeln schmelzen, nehmen sie Wärme aus der Umgebung auf. Wenn es kälter wird und das Paraffin wieder erstarrt, gibt es die Wärme wieder frei und kann so Temperaturschwankungen abschwächen. Die Projektbeteiligten testeten, in welchem Verhältnis man die Paraffinkugeln Estrich zumischen kann. Um herauszufinden, wann Fließfähigkeit und Materialeigenschaft am besten sind, erprobten Maxit und ISE verschiedene Estriche unter unterschiedlichen Bedingungen. Obwohl das Konzept funktioniert, erwiesen sich die Materialkosten letztendlich als noch zu hoch, so dass Maxit vorerst kein System mit mikroverkapseltem Paraffin auf den Markt bringt.

Freiland- und Laboruntersuchungen zum Verhalten ausgewählter Sulfonylharnstoff-Herbizide im Boden
Freiburg

Herbizide und Grundwasser

Seit den 1980er Jahren verwendet die Landwirtschaft immer mehr Herbizide auf Basis von Sulfonylharnstoffen (SHS). Weil SHS für Säugetiere nur gering toxisch sind und schon bei niedrigen Mengen effizient wirken, sind SHS beim Maisanbau mittlerweile das zweitwichtigste Pflanzenschutzmittel. Bisher wusste man überwiegend aus Modellversuchen, wie sich die Stoffe im Boden verhalten. Nachdem neuere Untersuchungen SHS im Trink- und Oberflächenwasser nachwiesen, untersuchte badenova zusammen mit dem Technologiezentrum Wasser in Karlsruhe, ob und wie stark sechs SHS-Stoffe ins Grundwasser auswaschen. Dazu untersuchten die Forscher neben den Laborversuchen eine Testfläche bei Bruchsal sowie zwei weitere in den Wasserschutzgebieten Hausen und Donauried bei Langenau. Nach Projektende 2008 stand fest, dass die Herbizide in sehr unterschiedlichen Mengen ins Grundwasser gelangen, wobei die Standortbedingungen eine bedeutende Rolle spielen. Besonders nach Starkregen ist es möglich, dass sich mittlere Konzentrationen an SHS im Grundwasser finden. Zusätzlich wiesen die Forscher darauf hin, dass sich die Stoffe im Boden anreichern und so in Zukunft für stärkere Konzentrationen sorgen könnten. Daher empfehlen die Wissenschaftler, dass Behörden und Wasserversorger künftig vier der untersuchten Stoffe in ihrem Grund- und Rohwassermonitoring überwachen. Besonders für die Oberrheinregion, wo Mais bereits knapp ein Viertel der Anbauflächen ausmacht, tragen die Ergebnisse dazu bei, dass die Landwirte SHS-Herbizide bewusster und umweltfreundlicher einsetzen können.

TeWaB, Wirkungsgradsteigerung eines BHKW mittels Thermoelektrischem Wärmetauscher
Freiburg

Thermoelektrische Generatoren im Hochtemperaturbereich für BHKW

Wie wirtschaftlich ein BHKW ist, hängt wesentlich von dessen elektrischem Wirkungsgrad ab. Wärmetauscher mit thermoelektrischen Generatoren können aus dem heißen Abgas des BHKWs zusätzlich Strom gewinnen und damit den Wirkungsgrad erhöhen. Thermoelektrische Generatoren wandeln Wärmeströme zwischen einer warmen und einer kalten Seite in elektrische Energie um. Sie sind robust, weitgehend wartungsfrei und langlebig, jedoch eigneten sich herkömmliche Generatoren nur für Temperaturen bis 200 °C. So bleibt die Wärmeenergie aus dem Abgasstrom ungenutzt. Das Fraunhofer Institut für physikalische Messtechnik (IPM) hat in den vergangenen Jahren erstmals Module entwickelt, die sich für Temperaturen bis 550 °C eignen. Zusammen mit der Firma Schleif Automation, spezialisiert auf den innovativen Anlagenbau, entwickelt das IPM einen thermoelektrischen Generator, der parallel zum vorhandenen Wärmetauscher die BHKW-Abwärme nutzt. Hierdurch kann neben der reinen Brauchwassererwärmung zusätzlich mit Hilfe des Wärmetauschers elektrischer Strom generiert werden. Das Projektteam simuliert zunächst das Verhalten des thermoelektrischen Wärmetauschers bei Betrieb im Abgasstrom eines BHKWs, um eine möglichst hohe Ausbeute an elektrischer Leistung zu erzielen. Danach wird ein eigens optimierter thermoelektrischer Wärmetauscher hergestellt und in einem von badenova betriebenen Schleif-BHKW eingesetzt. Die anfallenden Daten integrieren die Forscher in die BHKW-Steuerungssoftware, um einen reibungslosen und effektiven Betrieb zu garantieren. Nach dieser Testphase kommt der Wärmetauscher in einem von badenova betriebenen Schleif-BHKW zum Einsatz. Die Forscher rechnen damit, dass ihr System den elektrischen Wirkungsgrad der BHKW um etwa 3 % steigert. In Zukunft könnten solche thermoelektrische Generatoren nicht nur in BHKWs, sondern auch in Fahrzeugen Verwendung finden und so dazu beitragen Treibstoff und CO2 einzusparen.

  • Über Uns
  • RIGHT OFFCANVAS AREA