Zurück zur Übersicht

Das VAG-Netz als Speicher für PV-Strom

Das klimaneutrale Freiburger Fußballstadion, Baubeginn geplant 2018, wird mit Strom aus Photovoltaikanlagen versorgt werden. Dabei müssen die Planer den stark schwankenden Energiebedarf – hoch an Spieltagen, niedrig in den Wochen dazwischen – in Betracht ziehen. Deshalb bekommt das Stadion voraussichtlich zwei PV-Anlagen: eine kleine zur Deckung des Grundbedarfs und eine größere zur Deckung der Spitzenlasten. Kann der Strom nicht vom Stadion genutzt werden, wird er ins Stromnetz eingespeist. Wirtschaftlich ist das oft wenig sinnvoll, denn wenn auch andere Erzeuger erneuerbarer Energien viel Strom einspeisen, z. b. in sonnigen Sommermonaten, erhält der Betreiber nur geringe oder gar keine Erlöse. Daher analysiert eine Machbarkeitsstudie der badenova WärmePlus und des Fraunhofer ISE eine alternative Einspeisung, nämlich ins Straßenbahnnetz der VAG. Daraus kann eine Gewinnsituation für beide Seiten entstehen: Die VAG erhält Strom zu günstigeren Konditionen; die WärmePlus kann den PV-Strom direkt,wirtschaftlich und lokal sinnvoll einsetzen.

Zentraler Bestandteil eines solchen Systems ist ein Batteriespeicher, der flexibel zwischen Angebot und Nachfrage puffern kann. Ebenso könnte das Speichersystem auch die Energieeffizienz der VAG verbessern. Bisher gehen bis zu 950.000 kWh Bremsenergie pro Jahr verloren. Zwar sind die Straßenbahnen der VAG rückspeisefähig, d. h. sie können die beim Bremsen erzeugte Energie ans Straßenbahnnetz abgeben, das funktioniert aber nur, wenn sich gerade eine anfahrende oder beschleunigende Straßenbahn in unmittelbarer Nähe befindet, um die Energie aufzunehmen. Ist dies nicht der Fall, z. b. an Ausläuferstrecken oder Endhaltestellen, wandeln die Straßenbahnen die Bremsenergie in Verlustwärme um. Ein Batteriespeicher könnte diesen überschüssigen Strom aufnehmen.

In einem früheren Innovationsfondsprojekt hatte die VAG bereits einen kleineren Schwungradspeicher an einer Endhaltestelle erprobt. Im jetzigen Projekt planen die Experten von WärmePlus und ISE ein komplexeres Speichersystem, dass sowohl PV-Strom als auch Bremsenergie aufnehmen und gezielt und erlösoptimiert entweder über einen Wechselrichter an das öffentliche Netz oder direkt als Gleichstrom in das Straßenbahnnetz abgibt. Dazu vergleichen sie verschiedene auf dem Markt erhältliche Speichermodelle, und analysieren, wie groß ein solcher Speicher sein muss, um sowohl wirtschaftlich wie effizient zu sein.

Mit dem an die lokale Infrastruktur angepassten Konzept zeigt das Projekt neue Wege auf, um Energieversorgung und Energiewende ökologisch und ökonomisch sinnvoll zu gestalten.

Projektdaten

Projektnummer 2017-07
Projektart Forschung und Studien
Projektträger badenova Wärmeplus GmbH & Co. KG
Laufzeit April 2017 bis März 2018
Zuschuss 62.853 €

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

ARTHYMES Archaea Transform Hydrogen to Methane for Energy Storage
Offenburg

Methanisierung von Wasserstoff als Speicher für Überschussenergie

Wind- und Sonnenenergie stellen einen wachsenden Anteil am deutschen Strommarkt. Beide Energiequellen sind jedoch stark wetterabhängig, so dass die Einspeisung ins Stromnetz zwischen Überschüssen und Unterversorgung schwankt. Stromspeicher können diese Schwankungen ausgleichen, sind aber noch nicht flächendeckend vorhanden. Bisher kamen vor allem Pumpspeicherkraftwerke zum Einsatz, die aber allein den Speicherbedarf nicht decken können. Auch Elektroautos, zeigt ein vorheriges Innovationsfondsprojekt, eignen sich prinzipiell als Speicher für überschüssige Energie. Angesichts ihres nur langsam wachsenden Marktanteils sind auch sie bisher nicht als Stromspeicher im großen Maßstab geeignet. Das Erdgasnetz hingegen bietet eine Speicherkapazität von 200 TWh, ein Vielfaches der momentan benötigten etwa 15 TWh. Um elektrische Energie ins Gasnetz einzuspeisen, wird diese genutzt, um in einem elektrolytischen Prozess zuerst aus Wasser Wasserstoff zu gewinnen. Anschließend wird der Wasserstoff biologisch in Methan umgewandelt. Diese Technik ist jedoch bisher nur im Labormaßstab erprobt; die einzelnen Faktoren und beteiligten Mikroorganismen sind noch kaum erforscht. Das Projekt der Hochschule Offenburg untersuchte diesen Prozess der biologischen Methanisierung ausführlich und analysierte, inwiefern sich Wasserstoff als Cosubstrat für Biogasanlagen eignet. Biogas entsteht in einer anaeroben Fütterungskette, in der sich aus Substrat – also Energiepflanzen, Grünschnitt oder Abfallstoffen – zuerst Kohlendioxid und Wasserstoff und schließlich Methan bildet. Rohbiogas enthält allerdings immer noch 30 bis 50 Prozent CO2, das aufwändig ausgefiltert werden muss, bevor das Biogas ins Erdgasnetz eingespeist werden kann. Durch Zugabe von zusätzlichem Wasserstoff aus Überschussstrom zum Gärprozess kann auch das restliche CO2 zu Methan umgewandelt werden. Um dieses bisher nur im Labormaßstab erprobtes Verfahren der in situ-Methanisierung zu optimieren, erforschten die Offenburger Wissenschaftler verschiedene Verfahren, um den Wasserstoff in den Vergasungsprozess einzuschleusen, so dass er optimal durch die beteiligten Mikroorganismen, den Archaeen, verwertet wird, ohne diese zu beschädigen. Mit ihren weitreichenden Erfahrungen in der Biogasforschung analysierten die Forscher der Hochschule verfahrenstechnische, mikrobiologische, chemische und physikalische Aspekte der Methanisierung. Die Hochschule setzt sich hierbei die Entwicklung eines Moduls zum Ziel, dass nach Maßstabsübertrag in etwas 7000 deutschen Biogasanlagen integriert werden könnte. Das Projekt trägt so zur Lösung zweier Problemfelder bei: Zum einen bietet es große Speicherkapazitäten für Überschussenergie, zum anderen macht es Biogasanlagen ökologisch und ökonomisch effizienter, indem es den Substratbedarf reduziert. Weil das mit Methan behandelte Biogas kaum noch CO2 enthält, entfällt auch die aufwändige Aufbereitung, bevor das Gas ins Erdgasnetz eingespeist werden kann. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Durch Einbringen von Wasserstoff über blasenfreie Membranbegasung in Biogasanlagen kann ohne pH-Regulation die Methankonzentration im Rohbiogas auf 80-90 % gesteigert werden. Dabei steigt der pH-Wert an, wird aber noch von der Mikrobiologie toleriert. Die Wasserstoffkonzentration im Produktgas liegt bei wenigen Prozent. Der eingespeiste Wasserstoff wird nahezu vollständig umgesetzt. Methankonzentrationen von nahezu 100 % werden ohne pH-Regulation nur temporär erreicht, da der durch den CO2-Verbrauch auftretende extreme pH-Wert zu Schädigungen der Mikrobiologie führt. Ein Langzeitbetrieb mit solch hohen Methankonzentrationen ist jedoch bei pH-Regulation/Pufferung denkbar. Neben hochgasdurchlässigen, relativ teuren Membranen scheinen unter Berücksichtigung der Grenzwerte für die blasenfreie Begasung auch preisgünstigere Membranmaterialien geeignet zu sein. Die im Projekt getesteten Membranen zeigten kaum Biofilmbildung, so dass sie bei ausreichender Stabilität vermutlich auch längerfristig eingesetzt werden können.

Standortbezogene Minimierungsstrategie für den Metaboliten-Eintrag ins Grundwasser
Freiburg

Minimierung von Pflanzenschutzmittelabbauprodukten im Grundwasser

Nicht nur Pflanzenschutzmittel, sondern auch deren Abbauprodukte, sogenannte Metabolite, sind potentielle Schadstoffe, die ins Grund- und Trinkwasser gelangen können. Verbesserte Analysemethoden machten es in den letzten Jahren möglich, eine steigende Anzahl an Metaboliten im Boden und Grundwasser nachzuweisen. Über die Entstehung, das Verhalten und die Auswirkungen dieser Metaboliten ist jedoch recht wenig bekannt. Langfristige, vergleichende und flächendeckende Untersuchungen liegen noch kaum vor, genauso wenig wie standardisierte Verfahren, um Bodenproben quantitativ auf eine große Anzahl an Metaboliten zu untersuchen. Das Projekt von badenova und dem DVGW-Technologiezentrum Wasser (TZW) in Karlsruhe setzte hier an und untersuchte beispielhaft zwei Grundwassergebiete in Südbaden. Mit den Ergebnissen entstanden verallgemeinernde Modelle und Handlungsempfehlungen. Ziel war es, nicht nur das Vorkommen, sondern den gesamten Entstehungs- und Versickerungsprozess hinsichtlich Ausgangsstoffen, Bodenbeschaffenheit, Eintragswegen und Umweltfaktoren zu erfassen. Hierfür entwickelten die Projektpartner die vorhandene Boden- und Wasseranalytik im Labor sowie in den beiden Untersuchungsgebieten – den Wassereinzugsgebieten Hausen und Ebnet – weiter. Diese beiden Gebiete weisen eine sehr unterschiedliche Belastung an Metaboliten auf, was, wie sich im Projektverlauf herausstellte, mit der unterschiedlichen landwirtschaftlichen Nutzung und damit verbundenen Einsatz von Pflanzenschutzmitteln, dem unterschiedlichen Humusgehalt der Böden sowie dem Grundwasserneubildungverhalten erklärbar ist. Diese Ergebnisse und Einflussfaktoren sind auf andere Wassereinzugsgebiete übertragbar und machen es möglich, das Vorkommen von Metaboliten räumlich und zeitlich vorherzusagen und mögliche Problemgebiete zu identifizieren. Außerdem erstellten die Projektpartner einen Maßnahmenkatalog für Wasserversorger und Landwirtschaft, um den Eintrag von Metaboliten ins Grundwasser in Zukunft zu minimieren. Hierzu gehören ein verbessertes Monitoring, eine optimierte Zusammenarbeit zwischen Behörden, Landwirtschaft und Wasserversorgern und nicht zuletzt eine breitere Betrachtung von Metaboliten bei der Zulassung von Pflanzenschutzmitteln. Drei wesentliche Erkenntnisse: •Die Flächennutzungen und der damit verbundene Pflanzenschutzmitteleinsatz bestimmen den Eintrag von Metaboliten ins Grundwasser. •Weitere wichtige Einflussfaktoren auf das Versickerungsverhalten sind der Humusgehalt der Böden und die Grundwasserneubildungsrate. Niedrige Humusgehalte und eine geringe Grundwasserneubildungsrate begünstigen eine höhere Belastung des Grundwassers mit PSM-Metaboliten. •Die Gehalte an PSM-Metaboliten an den Modellstandorten bilden die Nutzungen dort sehr gut ab und lassen die Verlagerung in tiefere Horizonte erkennen.

Arzneimittel in der aquatischen Umwelt
Freiburg

Arzneimittelrückstände im Abwasser

Pro Jahr verbrauchen die Deutschen 38.000 Tonnen pharmazeutischer Wirkstoffe. Weil sie oft unsachgemäß entsorgt werden, gelangen Spuren davon über Kanalisation und Kläranlage in den Wasserkreislauf. Besonders häufig sind Desinfektions- und Kontrastmittel sowie Antibiotika oder das Antidiabetikum Metformin. In zwei Modellgebieten in der Region Freiburg identifizierten das Technologiezentrum Wasser Karlsruhe und das Institut für Umweltmedizin und Krankenhaushygiene der Uniklinik Freiburg deshalb exemplarisch alle Quellen, die das Trinkwasser mit Arzneimittelspuren verunreinigen. Die gefundenen Konzentrationenlagen lagen mindestens 10.000fach unter der niedrigsten Dosis, in der Menschen das jeweilige Arzneimittel einnehmen. Die Experten stellten aber fest, dass Bakterien einige Wirkstoffe, die den menschlichen Stoffwechsel unverändert passieren, in der Kläranlage umwandeln. So entstehen neue Stoffe, deren Verhalten man bisher nicht voraussagen kann. Nicht die Krankenhäuser, in denen es ohnehin möglich ist, Medikamente professionell zu entsorgen, sondern die Privathaushalte verbrauchen die meisten Arzneimittel, so die Studie. Deshalb betont sie, wie wichtig es ist, die Menschen dafür zu sensibilisieren, nicht gebrauchte Medikamente verantwortungsvoll zu entsorgen. Weiterhin empfehlen die Experten Ärzten, möglichst umweltfreundliche Stoffe zu verschreiben. Zwar sind viele Stoffe nicht abbaubar, Laborversuche zeigten aber, dass konventionelle Verfahren wie Oxidation oder Aktivkohlefiler die Mehrzahl von ihnen entfernen.