Zurück zur Übersicht

Umwelt-, Klima- und Nachhaltigkeitskonzept für die Landesgartenschau Lahr 2018

Im Dezember 2009 hat der Ministerrat Baden-Württemberg der Stadt Lahr den Zuschlag für die Landesgartenschau 2018 erteilt. Bei einer Großveranstaltung wie einer Landesgartenschau, haben die Flächeninanspruchnahme, die notwendige Infrastruktur, die Versorgung mit Energie und Wasser, die Anreise, die Verpflegung der Besucher und die Entsorgung des Abfalls einen enormen Einfluss auf Ökosysteme, Umwelt und Klima. Erfahrungen von anderen Großveranstaltungen zeigen, dass Klima- und Umweltschutz keine nachrangigen Ziele sind, die sich bei Veranstaltungen „beiläufig“ oder „nebenher“ realisieren lassen. Sie sind immer dann effektiv und erfolgreich, wenn sie von Anfang an in allen Phasen berücksichtigt werden. Bei der Planung und Organisation der Landesgartenschau in Lahr sollen daher frühzeitig Klima- und Umweltbelange, aber auch Aspekte der Nachhaltigkeit einbezogen werden.

Die von der Stabsstelle Umwelt erarbeiteten Grundlagen und Ideen wurden vom beauftragten Öko-Institut e.V. in Dortmund aufgegriffen und weiterentwickelt. Unter Einbeziehung wichtiger Akteure (Stadtverwaltung, Gemeinderat, Freundeskreis) wurde gemeinsam ein abgestimmtes Umwelt-, Klima- und Nachhaltigkeitskonzept für die Landesgartenschau 2018 erarbeitet. Wesentliche Punkte aus wichtigen Themengebieten wurden daraus als Umwelt-, Klima- und Nachhaltigkeits-Leitlinien formuliert und anschließend von der Landesgartenschau Lahr 2018 GmbH beschlossen.

Als Publikumsmagnet weckt die Gartenschau Interesse an Umwelt- und Klimaschutz und ist ein weiteres Modell, um Großveranstaltungen in Zukunft nachhaltig und möglichst klimaneutral zu gestalten. Weiterführende Informationen und Ergebnisse der Untersuchungen finden Sie im beigefügten Abschlussbericht.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Bei Großveranstaltungen ist eine frühzeitige Erarbeitung und Abstimmung und eine verbindliche Beschließung von Umwelt-, Klima- und Nachhaltigkeitsleitlinien erforderlich, damit diese Punkte bei der Planung und Durchführung berücksichtigt werden.
  • Neben den Leitlinien ist die Zurverfügungstellung eines umfassenden Maßnahmenkatalogs bzw. einer Checkliste eine wichtige Hilfestellung für die Beteiligten.
  • Damit die Leitlinien und Maßnahmen in konkrete Aktionen und Projekte umgesetzt werden, sind eine Begleitung und ein Monitoring während des Planungs- und Durchführungszeitraums erforderlich.

Projektdaten

Projektnummer 2012-14
Projektart Forschung und Studien
Projektträger Stadt Lahr
Laufzeit Mai 2012 bis November 2015
Zuschuss 22.478

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Gülleanwendung auf Grünland: Verminderung gasförmiger und gelöster Stickstoffverluste durch Zusatz pyrogener Pflanzenkohle zum Güllelager
Merzhausen

Biokohle gegen Stickstoffverluste in der Gülledüngung

Gülle ist ein altbewährtes Düngemittel. Beim Austragen von Gülle wie auch von mineralischen Düngern lösen sich jedoch Stickstoffverbindungen. Ammoniak oder Nitrat sickern ins Grundwasser; Lachgas trägt zur Klimaerwärmung bei. Verschiedene Ansätze bekämpfen dieses Problem seit Jahren und haben schon wesentlich dazu beigetragen, die Gülledüngung effizienter und nachhaltiger zu machen. Der Einsatz von Pflanzenkohle aus Pyrolyseanlagen bietet einen weiteren innovativen Baustein, um Stickstoffemissionen zu vermindern. Pyrolyseöfen wandeln bei hoher Hitze Biomasse in Verbrennungsgas und Biokohle um. Zum Einsatz kommt vor allem Material, das anderweitig kaum verwertbar ist. Ein Innovationsfondsprojekt aus dem Jahr 2011 beispielsweise nutzt eine mobile Pyrolyseanlage, um Biomasse aus Rebstockrodung direkt am Weinberg zu verkohlen. Die so gewonnene Kohle reduziert das Volumen der eingesetzten Biomasse drastisch, lässt sich somit leicht transportieren und ist vielseitig einsetzbar. Besonders in der Landwirtschaft zeigt die Biokohle ihr Potential: In den Boden eingearbeitet, speichert sie Wasser und Nährstoffe und wirkt als Kohlenstoffsenke. Aus Praxisberichten ist bekannt, dass im Boden eingearbeitete Biokohle auch Stickstoffemissionen vermindert. Wie genau die Biokohle die Stickstoffverbindungen bindet und den Nitratstoffwechsel verändert ist noch wenig bekannt. Am Mathislehof in Buchenbach erforschten Wissenschaftler vom Institut für Bodenkunde der Universität Freiburg und einer unabhängigen Agentur nun, inwiefern Biokohle Stickstoffemissionen reduziert. Dafür stellten die Forscher am Mathislehof, einem Mutterkuhbetrieb mit Weidewirtschaft, mehrere Versuchsbehälter auf. Die Fässer enthielten Gülle angereichert mit Biokohle in unterschiedlichen Konzentrationen. In regelmäßigen Abständen maßen die Forscher, welche Mengen an Stickstoffverbindungen, unter anderem Ammoniak und Lachgas, aus den Fässern entweichen. Im Frühjahr brachte der Mathieslehof diese verschiedenen Güllegemische mehrmals auf Versuchsflächen aus. Auf diesen Gebieten maßen die Forscher dann über ein Jahr hinweg die gasförmigen und flüssigen Stickstoffemissionen. Das einjährige Projekt maß außerdem, wie lange die Biokohle im Boden verbleibt, ob sie in Hanglagen stark auswäscht und wie sie sich auf das Ökosystem des Weidelandes auswirkt. Das Projekt erforschte damit ein Verfahren, das mit minimalem Aufwand Gülledüngung effizienter und gleichzeitig klimafreundlicher macht. Biokohle verwertet klimaneutral landwirtschaftliche Reststoffe und macht die Nährstoffe der Gülle für Pflanzen besser verfügbar. Weil die Biokohle Ammoniak und andere Geruchsstoffe bindet, nimmt auch der typische Geruch ab und macht so die Gülleausbringung gesellschaftlich akzeptabler. Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt Aufgrund einer Befragung mit Blindgeruchsproben zeigte sich, dass acht Gramm Kohle pro Liter Gülle ausreichend sind, um eine Geruchsminderung um 40 Prozent zu erzeugen Die Kohlen erwiesen sich in diversen Biotests gut verträglich für die Umwelt und Lebenswelt des Bodens. Für Regenwürmer wirkte Gülle sogar anziehender, wenn diese mit Kohle behandelt worden war Keine messbaren Unterschiede in der Ausgasung von Ammoniak oder Lachgas. Auch nach Gülleausbringung auf Grünland war die N-Freisetzung gleich, ob gasförmig oder flüssig, hier einschließlich Nitrat und Ammonium. Sehr geringe Kohlemengen im ersten Anwendungsjahr könnten die Ursache fehlender Unterschiede sein. Für die beiden verwendeten Pflazenkohlen wurden Unterschiede in ihrer Wirkungsstärke festgestellt. Inwiefern diese jedoch bestimmt werden von Parametern der Herstellungsweise oder Biomassequelle ist aufgrund der vorliegenden Daten nicht ersichtlich The main results were as follows In olfactory tests, however, significant effects were visible in the presence of biochar. Due to blind tests and interviews only 8 g biochar per liter slurry were necessary to reduce the odor by 40 percent. In various bioassays the biochars proved to be without consequences for the soil environment. For earthworms cattle manure seemed even more attractive if it was treated with bochar before. Measurable differences in the emission of ammonia and nitrous oxide were undetectable. Similarly, no effect on the N-release (gaseous or liquid) emerged after slurry spreading on grassland, here including nitrate and ammonium. The lack of differences might be due to very small amounts of biochar in the first year of application (0,08 an 0,4 t/ha). The two biochars displayed different effects during several assays. But determining the criteria responsible for these differences (either parameters of manufacture or biomass source) is not apparent from the available data.

Einspeisung von PV-Strom ins Straßenbahnnetz in Kombination mit einem Batteriespeicher zur Maximierung der Anlagengröße für einen ökonomischen Betrieb und größtmöglichen Beitrag zum Klimaschutz
Freiburg

Das VAG-Netz als Speicher für PV-Strom

Das klimaneutrale Freiburger Fußballstadion wird nach Fertigstellung mit Strom aus Photovoltaikanlagen versorgt. Dabei mußten die Planer den stark schwankenden Energiebedarf – hoch an Spieltagen, niedrig in den Wochen dazwischen – in Betracht ziehen. Deshalb wurden beim Stadion zwei PV-Anlagen vorgesehen: eine kleine zur Deckung des Grundbedarfs und eine größere zur Deckung der Spitzenlasten. Kann der Strom nicht vom Stadion genutzt werden, wird er ins Stromnetz eingespeist. Wirtschaftlich ist das oft wenig sinnvoll, denn wenn auch andere Erzeuger erneuerbarer Energien viel Strom einspeisen, z. b. in sonnigen Sommermonaten, erhält der Betreiber nur geringe oder gar keine Erlöse. Daher analysierte eine Machbarkeitsstudie der badenova WärmePlus und des Fraunhofer ISE eine alternative Einspeisung, nämlich ins Straßenbahnnetz der VAG. Das Projektziel war es, herauszufinden, ob daraus eine Gewinnsituation für beide Seiten entstehen kann: Die VAG erhält Strom zu günstigeren Konditionen; die WärmePlus kann den PV-Strom direkt,wirtschaftlich und lokal sinnvoll einsetzen. Zentraler Bestandteil eines solchen Systems ist ein Batteriespeicher, der flexibel zwischen Angebot und Nachfrage puffern kann. Ebenso könnte das Speichersystem auch die Energieeffizienz der VAG verbessern. Bisher gehen bis zu 950.000 kWh Bremsenergie pro Jahr verloren. Zwar sind die Straßenbahnen der VAG rückspeisefähig, d. h. sie können die beim Bremsen erzeugte Energie ans Straßenbahnnetz abgeben, das funktioniert aber nur, wenn sich gerade eine anfahrende oder beschleunigende Straßenbahn in unmittelbarer Nähe befindet, um die Energie aufzunehmen. Ist dies nicht der Fall, z. b. an Ausläuferstrecken oder Endhaltestellen, wandeln die Straßenbahnen die Bremsenergie in Verlustwärme um. Ein Batteriespeicher könnte diesen überschüssigen Strom aufnehmen. In einem früheren Innovationsfondsprojekt hatte die VAG bereits einen kleineren Schwungradspeicher an einer Endhaltestelle erprobt. Im jetzigen Projekt wurde von den Experten der WärmePlus und dem Fraunhofer ISE ein komplexeres Speichersystem angedacht, dass sowohl PV-Strom als auch Bremsenergie aufnehmen und gezielt und erlösoptimiert entweder über einen Wechselrichter an das öffentliche Netz oder direkt als Gleichstrom in das Straßenbahnnetz abgibt. Dazu verglichen sie verschiedene auf dem Markt erhältliche Speichermodelle, und analysierten, wie groß ein solcher Speicher ausgelegt sein muss, um sowohl wirtschaftlich wie effizient zu sein. Mit dem an die lokale Infrastruktur angepassten Konzept zeigte das Projekt neue Wege auf, um Energieversorgung und Energiewende ökologisch und ökonomisch sinnvoll zu gestalten. Darstellung drei wesentlicher Erkenntnisse aus dem Projekt: Große Herausforderung bei der Auslegung des Gesamtsystems ist in diesem Fall die sich stark ändernde Energiebezugsleistung beim Anfahren der Straßenbahnen. Darin unterscheidet sich dieser Anwendung eines PV-Batterie-Speichersystems stark von herkömmlichen Einsatzgebieten. Eben dies führt auch dazu, dass sehr anwendungsspezifische Batteriespeichertechnik eingesetzt werden muss, um das Straßenbahnnetz sinnvoll mit PV-Strom zu speisen. Diese ist wiederum oft teuer, da sie bisher nicht im Massenmarkt eingesetzt wird. Die aktuellen energiewirtschaftlichen Rahmenbedingungen erschweren den Ansatz eines multifunktionalen Batteriespeichers, wodurch viele Batteriespeicher mit nur einem Anwendungsfall nicht wirtschaftlich betrieben werden können. Bei weiteren Anwendungsfällen neben der PV-Stromzwischenspeicherung, wäre eine Wirtschaftlichkeit auch in diesem Fall leichter zu erzielen. Für eine bessere Wirtschaftlichkeit ist auf möglichst kurze Kabelstrecken und ein geeigneter Netzanschlusspunkt zu achten, da dadurch die Investitionskosten reduziert werden können. In diesem Fall waren die Kabelwege im Verhältnis zur PV-Leistung wesentlich zu hoch.

Anorganische Zuschlagstoffe in Biogasanlagen
Offenburg

Anorganische Zusatzstoffe für mehr Biogas

Biogas gehört zu den wenigen speicherbaren erneuerbaren Energien und ist damit ein wichtiger Bestandteil für eine nachhaltige Energiewirtschaft. Um Konkurrenz mit der Nahrungsmittelproduktion zu verhindern, setzen Biogasanlagen vermehrt auf Abfall- und Reststoffe. Dazu gehören beispielsweise Speisereste, Schlachtabfälle oder Molke. Diese Reststoffe möglichst effektiv zu Biogas zu vergären stellt die Anlagenbetreiber aber vor Schwierigkeiten. Oft fallen dabei Stoffe an, die den Fermentationsprozess verlangsamen. Der Innovationsfonds förderte bereits mehrere Projekte zur Vergärung verschiedener Abfallstoffe. Bei einem dieser Projekte, der Molkebiogasanlage der Käserei Monte Ziego in Teningen, fanden Forscher der Hochschule Offenburg heraus, das anorganische Zuschlagstoffe die Effizienz der Anlage deutlich steigerten. Anorganische Zuschlagstoffe sind natürliche Mineralien, die der Betreiber in kleinen Mengen im Gärtank zugibt. Im Fall der Teninger Anlage war das Bentonit, ein Tonmineral gemischt mit weiteren Begleitmineralien, andere Zuschlagstoffe bestehen aus Silikaten (Vermikulite), oder vulkaniertem Glas (Perlite). Die Erfahrung aus Teningen weitete das Projekt aus und testete, wie sich verschiedene Zuschlagstoffe auf die Biogasproduktion auswirken. Letztere werden nicht von den Biogasbakterien aufgenommen, sondern wirken stattdessen in der Biogasbrühe stabilisierend und bieten den Bakterien die Möglichkeit, sich anzulagern. Im Projekt testeten die Wissenschaftler, welche Stoffe die Biogasproduktion verlangsamen, und welche Zuschlagstoffe sich am besten eignen, um dem entgegenzuwirken. Gleichzeitig überprüften sie, wie sich die zugesetzten Stoffe auf die gesamte Anlage auswirken, beispielsweise auf Filter und Pumpen. Sie konnten dabei auf eigene Testanlagen und langjährige Erfahrung in der Biogasforschung zurückgreifen. Mineralische Zuschlagstoffe sind preiswert und bieten einen innovativen Weg, um die Biogasproduktion aus Reststoffen effizienter und wirtschaftlicher zu machen. Der Abschlussbericht folgt Anfang 2018 und gibt einen detailierten Einblick in die Foruschungsergebnisse. Drei Haupterkenntnisse: Die Zuschlagstoffe Bentonit StabiSil P7, Braunkohlekoks C85 zeigten sich als geeignet, einer Versäuerung in kontinuierliche gefütterten Biogasanlagen entgegenzuwirken. Bentonit StabiSil P7 kann mit einer Konzentration von 0,1 % bis 1,0 % und Braunkohlekoks C-85 bis zu einer Konzentration bis 1,5 % bei versäuernden Substraten eingesetzt werden, um die hydraulische Belastung einer Biogasanlage deutlich zu erhöhen. Überdosierungen der anorganischen Zuschlagstoffe können zu einer Verminderung der Biogasausbeute führen. Allgemeingültige Voraussagen können nicht getroffen werden. Voruntersuchungen sind entsprechend der Paarung „anorganischer Zuschlagstoff/Biogassubstrat“ in jedem Fall dringend anzuraten.