Zurück zur Übersicht

Umweltfreundliche Lüftung für sanierte Gebäude

In einem neuen Projekt untersuchte die Hochschule Offenburg, welche Fassadensysteme sich am besten eignen, Gebäude kostengünstig mit energieeffizienter Lüftung nachzurüsten. Hierbei eignen sich Schul- und Wohngebäude mit ihren unterschiedlichen Nutzerprofilen, um allgemeine Modelle für zentrale und dezentrale Anlagen zu erstellen. In Wohngebäuden möchten Nutzer Temperatur und Luftfeuchtigkeit dezentral steuern können. Für die meisten Klassenzimmer, Flure oder Aufenthaltsräume hingegen sind zentral gesteuerte Anlagen am effizientesten. Einzelne Sondernutzungsräume wie z. B. Computerräume, Rektorate oder Lehrerzimmer benötigen jedoch dezentrale Systeme.

Zu Beginn des Projektes messen die Wissenschaftler die Luftqualität in den bereits klimatechnisch sanierten Offenburger Schulen. Anschließend installierten sie mehrere Anlagentypen in Schulgebäuden sowie – in Zusammenarbeit mit lokalen Wohnbaugesellschaften – in sanierten Mietshäusern. In den Schulgebäuden spielten sie verschiedene Szenarien durch und vergleichen die Ergebnisse mit einem Referenzraum. In den Wohngebäuden arbeiten Wandgeräte, Rohr-, oder Brüstungslüfter, wobei in Wohn- und Schlafzimmern der CO2-Gehalt, in Küche und Bad die Feuchtigkeit ausschlaggebend ist. Dabei berücksichtigten die Experten Kosten für Einbau und langfristige Wartung, wie energieeffizient die Anlagen sind und wie gut sie Feuchtigkeit, Lufthygiene und CO2-Konzentration regulierten. Auch analysierten sie, wie man die neuen Anlagen in bestehende Gebäudeautomation einbinden und so Energie und Kosten sparen kann.

Mit den Ergebnissen brachten die Wissenschaftler den Maßnahmenkatalog für Schulen auf den neuesten Stand. Infoflyer und Artikel in der Fachliteratur informieren Architekten, Handwerker, Wohnbaugesellschaften und Hausbesitzer. Das Projekt macht so Schüler und Öffentlichkeit vertraut mit energieeffizienten Methoden für die Gebäudelüftung und bietet Interessierten einen Überblick über vorhandene Technologien.

Darstellung dreier wesentlicher Erkenntnisse aus dem Projekt

  • Die CO2-Konzentration steigt in Unterrichtsräumen ohne Lüftung während der Unterrichts sehr schnell auf sehr hohe, bedenkliche Werte, sinkt aber nur sehr langsam und liegt häufig auch am nächsten Tag noch über dem Wert der Außenluft. Dies kann am nächsten Tag zu noch höheren Werten führen. Dementsprechend sind Lüftungsmaßnahmen zu empfehlen.
  • In den Schulen ist die Wahl der geeigneten Lüftungsmaßnahme stark von der Raumbelastung abhängig. In schwach belasteten Räumen genügen u. U. CO2-Ampeln, die Lüftungsbedarf anzeigen. In hochbelasteten Räumen wird der Einbau von dezentralen Lüftungsgeräten empfohlen.
  • In Mietwohnungen hängt der Verlauf der relativen Feuchte im Raum stark vom Nutzer verhalten (Lüften, Duschen, Kochen) ab. Lüftungsmaßnahmen sind dennoch auch bei geringer Belastung empfehlenswert. Bei Mieterwechsel kann sich die Situation deutlich verändern.

Projektdaten

Projektnummer 2012-10
Projektart Forschung und Studien
Projektträger Hochschule Offenburg
Laufzeit April 2012 bis Dez 2016
Zuschuss 137.250

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

"SupA-B" Effiziente Wasserspeicherung und Stickstoff-Düngung durch den Einsatz von Absorber zur Reduzierung der Nitratauswaschung ins Grundwasser
Ehrenkirchen

Effizientere Düngung mit Superabsorbern

Der Klimawandel stellt auch die heimische Landwirtschaft vor Herausforderungen. Einerseits gibt es immer mehr und heftigere Starkregen, wobei vermehrt Nitratdünger ins Grundwasser ausgewaschen wird. Gleichzeitig werden die Sommer trockener und heißer, so dass die Landwirte die Felder immer häufiger beregnen müssen und dabei auf Grundwasserreserven zurückgreifen. Die Landwirte die keine Möglichkeit zur Bewässerung haben kämpfen mit Ernteeinbusen sogar bis zum Total-Ausfall. In einem Pilotprojekt erprobte die Firma EK-Management in Zusammenarbeit mit Landwirten, dem Landratsamt Breisgau-Hochschwarzwald und der LTZ Karlsruhe den Bodenhilfsstoff Stockosorb (GeleeVital) . Dabei handelt es sich um einen sogenannten Superabsorber, der bis zum 300-fachen seines Eigengewichts an Wasser – und damit auch die darin gelösten Nährstoffe – speichern kann. So wird bei Regen weniger Nitrat ins Grundwasser ausgewaschen und das Wasser steht Pflanzen in Trockenzeiten zur Verfügung. In anderen Ländern werden diese Superabsorber bereits erfolgreich eingesetzt, in Deutschland bisher nur selten. Am Oberrhein waren diese noch unerprobt, aber wegen der wasserdurchlässigen Kies- und Sandböden besonders relevant. Die Projektpartner beobachteten auf verschiedenen Böden und mit verschiedenen Feldfrüchten wie sich Stockosorb über mehrere Jahre auf Ertrag, Nitratauswaschung und Wasserspeicherfähigkeit auswirkte. Das Projekt verglich die Wirkung und Wirtschaftlichkeit von Stockosorb mit der Feldwirtschaft ohne Absorbern und mit anderen Absorbern wie z. B. Biokohle, die schon in mehreren Innovationsfondsprojekten untersucht wurde. Außerdem beobachteten die Projektpartner, wie schnell und durch welche Mikroorganismen Stockosorb im Boden abgebaut wird, und wie lange die Wirkung vorhält. Damit trägt das Projekt zu einer nachhaltigeren und wasserschonenderen Landwirtschaft am Oberrhein bei. Darstellung drei wesentlicher Erkenntnisse aus dem Projekt: Durch den Einsatz von Superabsorber bei der Stickstoffdüngung im Ackerbau (geprüft bei Körnermais, Kürbis, Biogashirse und Ganzpflanzentriticale) können Nährstoffe und Wasser in begrenztem Umfang zusätzlich zur Bodenspeicherkapazität gespeichert werden. Die flächige Ausbringung von Superabsorber zur Stickstoffdüngung verursacht erhebliche Kosten und führte nicht zu einer signifikanten Steigerung der Stickstoffeffizienz (in Form von höheren Erträgen) und auch umweltschonende Wirkungen (geringerer Nitratgehalt im Boden) konnten nicht gefunden werden. In Depotform mit Stickstoffdüngern angewendet, verbesserten natürliche und synthetische Superabsorber die Stickstoffeffizienz und wirkten positiv auf Erträge und Umwelt. Diese Form der Anwendung kann als praxisrelevant angesehen werden.

	Machbarkeitsstudie zum Einsatz einer innovativen Technologie zur Bioenergieerzeugung mittels Pyrolyse mit niedrigen Staubemissionen und hohem CO2-Reduktionspotential
Freiburg

Studie zur Pyrolyse von Biomasse

Anders als beim Vergasen oder Verbrennen von Biomasse benötigt die Pyrolyse (auch Verschwelung genannt) keinen Sauerstoff, um Stoffe zu zersetzen. Deshalb nennt man dieses Verfahren, dessen Name sich vom griechischen ‚pyr’ für Feuer und ‚lysis’ für Auflösung ableitet, auch eine thermo-chemische Spaltung. Alleine durch das Erhitzen verschwelt der eingesetzte Stoff zu einer kohleartigen Masse. Das macht das Verfahren interessant, um biogene Reststoffe, wie sie in der Landwirtschaft oder der Lebensmittelproduktion anfallen, energetisch zu verwerten. Bei vielen Stoffen ist noch nicht bekannt, ob sie sich für eine Pyrolyse eignen. Ein Freiburger Projektteam testet das Pyrolyseverfahren für Kleegrasmischungen und für Okara, einem wässrigen Nebenprodukt der Tofuproduktion. Während man in Asien Okara in Suppen oder Gebäck verwendet, entsorgen hiesige Produzenten die Masse überwiegend als Abfallstoff oder verkaufen sie als Viehfutter. Wegen des hohen Wassergehaltes war es bisher schwierig, den Restenergiegehalt von Okara zu nutzen, ohne vorher viel Energie in die Trocknung zu stecken. Mit einer Pilotanlage testet das Projekt deshalb, ob sich Okara und Kleegras für Pyrolyseverfahren nutzen lassen. Hierbei wird die Biomasse im luftdichten Reaktor zu Synthesegas und Biokohle umgesetzt, die als konzentrierter Kohlenstoff (C) anfällt. In einem zweiten Reaktor verbrennt das Synthesegas emissionsarm zur Wärmenutzung. Biokohle – d. h. verkohlte Biomasse – zeichnet sich durch zwei Eigenschaften aus: In den Boden eingearbeitet verbessert sie dessen Fähigkeit, Wasser und Nährstoffe zu speichern. Unter dem Namen Terra Preta ist dieses Prinzip aus Südamerika bekannt, wo die Ureinwohner in präkolumbianischer Zeit so die Erträge auf den nährstoffarmen Böden verbesserten. Das Projekt untersucht, wie sich Biokohle aus Okara auf das Pflanzenwachstum und Stoffflüsse auswirkt, ob sie eventuell Schadstoffe enthält und ob sie sich überhaupt für hiesige Böden eignet. Noch eine zweite Eigenschaft macht die Biokohle zu einem besonderen Stoff. Sie speichert einen Großteil des Kohlenstoffes, einem Hauptbestandteil von Biomasse. Anders als bei fossilen Brennstoffen, deren Nutzung große Mengen an CO2 freisetzt oder beim Verbrennen von Biomasse bzw. Biogas, bei dem die ausgestoßene Menge an CO2 dem entspricht, was die Pflanzen während ihres Wachstums aufgenommen haben, hat die Pyrolyse eine negative CO2-Bilanz. Mit dieser sogenannten C-Sequestrierung bindet man durch die langsame Zerfallsrate der Biokohle den klimaschädlichen Stoff langfristig im Boden. Damit hat die Pyrolyse das Potential, bisher unbrauchbare oder gemischte biogene Resstoffe zu nutzen und mit dem Düngepotential der Biokohle die CO2-Bilanz verschiedenster Produktionskreisläufe zu verbessern. Ein weiteres Projekt

Aufbereitung von schwermetallhaltigen Aschen aus Biomasseverbrennungsanlagen
Offenburg

Neue Verwertungswege für Asche aus Biomasseverbrennungsanlagen

Beim Verbrennen von Biomasse zur Wärmeerzeugung entsteht Asche, die teilweise mit Schwermetallen belastet ist. Besonders beim Einsatz von Altholz und nicht naturbelassenen Hölzern ist der Anteil an belasteten Aschen hoch. Bisher müssen Betreiber diese Asche in speziellen Deponien kostenpflichtig entsorgen. Nun erforschte das Projekt der Hochschule Offenburg, inwiefern sich die Asche aus Biomasseöfen als kostengünstige Ersatzstoffe in der Herstellung von Baumaterialien wie Polymerbeton oder Schaumglas eignet. Dieses Verfahren bietet zwei Vorteile: Die Aschen ersetzen Sand, der bisher in der Betonherstellung eingesetzt wird und bei dessen Förderung und Weiterverarbeitung CO2 freigesetzt wird. Außerdem sind die Schwermetalle aus den Aschen in den Baustoffen gebunden und so nicht mehr umweltgefährdend. Während gering belastete Asche schon in der Betonherstellung im Einsatz ist, erprobten die Wissenschaftler diesen Weg erstmals mit problematischen hochbelasteten Aschen. Im Projekt analysierten die Wissenschaftler in einem ersten Schritt die Konsistenz und Bestandteile verschiedener Aschen, insbesondere ihre Belastung mit Schwermetallen und das Gefahrenpotential für Mensch und Umwelt. Anschließend untersuchten sie, wie die Zugabe von Aschen die Materialeigenschaften von Polymerbeton, Geopolymer, Sinterleichtbaustoffen und Schaumglas beeinflusst. Für die zwei erfolgreichsten Verwertungswege aus diesen vier Varianten berechneten die Forscher anschließend Produktionskosten und Wirtschaftlichkeit im Vergleich mit konventionell hergestellten Produkten. Auch die langfristigen Umweltauswirkungen durch den Einbau der Aschen wurden untersucht. Zusammen mit Partnern aus der Wirtschaft werden nun zwei Verwertungswege im größerem Maßstab angedacht und Vermarktungsmöglichkeiten eroriert. Das Pilotprojekt zeigte damit neue Wege auf, um Biomasseasche dezentral zu verwerten. Mehr Informationen auf dem Flyer und der Webseite der AG Biomasse der HS Offenburg. Darstellung drei wesentlicher Erkenntnisse aus dem Projekt: 1.Der Rohstoff Sand kann prinzipiell in Schaumglas, Leichtbeton, Sinterleichtbaustoffen und in Polymerbeton durch Aschen aus der Biomassefeuerung substituiert werden. Dabei werden die Baustoffanforderungen (Druckfestigkeit, Dichte, Aushärtezeit) erreicht. 2.Werden Aschen mit geringen Schwermetallgehalten als Zuschlagstoff bei der Herstellung von Recyclingbaustoffen verwendet, können die Produkte ohne Einschränkung eingesetzt werden. 3.Die Eignung der Asche als Zuschlagstoff für einzelne Verwertungswege hängt von der Feuerungsanlage, der eingesetzten Biomasse, der Art der Aschen und dem Schwermetallgehalt der Asche ab.