Zurück zur Übersicht

Wärme aus Abwasser im Denzlinger Schwimmbad

Es war geplant, die Abwärme des Denzlinger Schwimmbades zu nutzen, um das Bad zu heizen.

Wenn genug warmes Abwasser vorhanden ist und es potentielle Wärmenutzer nahe genug am Kanal gibt, kann es sich lohnen, das Abwasser zum Heizen zu nutzen. Dabei entzieht ein Wärmetauscher im Kanal dem Wasser die Wärme.

Im Sportpark Denzlingen schienen diese Bedingungen gegeben, weshalb dort geplant war, mit der Kanalwärme das dortige Sportbad zu heizen. Wegen der geänderten Planungen zog die Gemeinde den Antrag jedoch zurück.

Projektdaten

Projektnummer 2004-07
Projektart Bau und Anwendung
Projektträger Gemeinde Denzlingen
Laufzeit zurückgezogen
Zuschuss -

Downloads

Ihre Ansprechpartner

Richard Tuth

Richard Tuth

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-29 84

E-Mail: richard.tuth@badenova.de

Michael  Artmann

Michael Artmann

Innovationsfonds Klima- & Wasserschutz

T: 0761-279-22 53

E-Mail: michael.artmann@badenova.de

Einblicke in weitere Förderprojekte:

Einsatz einer voll-elektrischen Straßenkehrmaschine der 2m³-Klasse
Freiburg

Leise, emissionsarme Straßenkehrmaschine für Freiburg

Die Straßenkehrmaschinen der Abfall- und Stadtreinigung Freiburg (ASF) sind täglich unterwegs und halten die Stadt sauber. Die herkömmlichen, dieselbetriebenen Fahrzeuge sind aber laut und haben eine hohe CO2- und Schadstoffemission. Pro Jahr verbrauchen sie durchschnittlich 8.400 Liter Diesel. Ein Feldversuch der ASF erprobte deshalb eine vollelektrische und damit wesentlich leisere Kehrmaschine. Solche Maschinen sind bereits kommerziell erhältlich, wegen der teuren Akkus aber für die meisten Gemeinden noch nicht wirtschaftlich. Sind die höheren Anschaffungskosten jedoch gestemmt, liegen die Betriebskosten und Emissionswerte weit unter denen herkömlicher Fahrzeuge. So lassen sich mit einem einzigen Fahrzeug pro Jahr etwa 27 Tonnen CO2 einsparen. Eine ausführliche Dokumentation und Evaluation von Energieverbrauch, Reinigungsleistung, Geräuschemission, sowie den Betriebserfahrungen begleiteten das Projekt. Die Innovationsfondsförderung half, den Mehraufwand bei der Integration innovativer Technologien in bestehende Arbeitsabläufe und Kontexte zu kompensieren, und das Projekt übertragbar zu machen. Die Freiburger Kehrmaschine dient auch anderen Städten und Kommunen als Anschauungsobjekt. Bei Erfolg können sie nach und nach dieselbetriebene mit elektrischen Straßenkehrmaschinen ersetzen. 2011 erprobte die ASF bereits in einem weiteren Innovationsfondsprojekt ein Müllauto mit diesel-elektrischem Hybridbantrieb , das weiterhin im Einsatz ist. Stadtarbeiter und Anwohner loben regelmäßig den angenehm leisen Betrieb und die niedrige Abgasemisssion. Die Stadt Achern führt ein ähnliches Projekt mit einem elektrischem Müllsammelfahrzeug und elektrischen Geräten für die städtische Gartenpflege durch. Vier wesentliche Erkenntnisse: Die technische Funktionalität der eSKM im Innenstadtgebiet konnte bewiesen werden. alle Zielsetzungen wurden erfüllt. Die Einsparungen der Betriebskosten gegenüber einer konventionellen dieselbetriebenen Staßenkehrmaschine lag im Projektzeitraum bei 82%. Die CO2-Emmissionen konnten um rd. 25t/a gesenkt werden Die Mitarbeiter haben die technische Umstellung positiv angenommen

bidirektionales Kalt-Wärme-Netz mit Wärme-Bus-System im neubaugebiet Karl-May-Weg in Fischerbach
Fischerbach

Bidirektionales Kalt-Wärmenetz in Fischerbach

Die Gemeinde Fischerbach hat sich 2012 entschlossen, ein Bioenergiedorf zu werden. Ein innovatives Kaltwärmenetz in einem Neubaugebiet trägt zu diesem Ziel bei. Als Alternative zu klassischen Nahwärme kommt in Fischerbach kalte Nahwärme zum Einsatz, d.h. die angeschlossenen Häuser werden mit kaltem Wasser gewärmt oder gekühlt. Um dies zu bewerkstelligen, muss das Netz bidirektional arbeiten, d. h. es muss in der Lage sein, Energie bereitzustellen sowie auch aufzunehmen. Eine Ringleitung, gefüllt mit Wasser oder einem Wasser-Glycerin-Gemisch, verbindet die 24 Neubauten am Karl May-Weg. Aus ihr entnehmen in den Häusern Wärmepumpen Energie, um die Gebäude zu wärmen oder zu kühlen. Die Ringleitung wiederum führt ihr Wasser durch einen zentralen Eisspeicher, also einer Art im Boden vergrabener Wasserzisterne, die bis unter den Gefrierpunkt abgekühlt wird. Die Kreislaufwasser entzieht dem Speicher Wärme, der schrittweise gefriert, wobei latente Wärmeenergie für das Netz freigesetzt wird. Ist der Speicher gefroren, kann er durch Wärmeenergie aus dem Netz, über Sonnenkollektoren oder Abwärme wieder aufgeladen werden. Wärmepumpen, Wassernetz, Sonnenkollektoren und Eisspeicher bilden so ein synergetisches System, das weitgehend ohne Energie von außen auskommt. Die Daten aus dem Fischerbacher Netz liefern wichtige Erfahrungswerte, um solche innovativen Systeme zu optimieren und zukünftig auch andernorts einzusetzen. Führungen, Flyer und Medienberichte machten das Projekt überregional bekannt, verschiedene andere Gemeinden planen inzwischen ein bidirektionales Kaltwärmenetz. Drei wesentliche Erkenntnisse: •Es empfiehlt sich eine genaue Evaluation des Projektplaners, um spätere Enttäuschungen und Probleme im Projektablauf zu vermeiden. •Der Energieeintrag aus dem Leitungsnetz ist deutlich größer als erwartet. Hätte dies anfangs besser berechnet werden können, hätte sich die Größe und damit die Kosten des Eisspeichers deutlich reduziert. •Unsicherheit bestand anfangs hinsichtlich der Reaktion der Grundstückkäufer auf das neue System. Dies wurde aber zum Großteil gut angenommen, die Bauherren waren froh, dass die Wärme- und Kälteversorgung bereits abgedeckt war.

 Energiegewinnung innerhalb der Trinkwasserversorgung Kirchzarten durch Einbau einer Wasserkraftanlage
Kirchzarten

Wasserkraft im Wasserwerk

Bisher noch selten genutzt, eignen sich auch die weitreichenden Rohrsysteme von Wasserwerken dafür, Energie aus Wasser zu gewinnen. Zwar ist die Ausbeute hier geringer, andererseits bieten geschlossene Systeme ihre eigenen Vorteile. Weil sie nicht in oberirdische Gewässer eingreifen, entstehen keine Konflikte mit Schifferei oder Fischpopulation. Der Zulauf ist zudem zu allen Jahreszeiten gleichmäßig und durch das saubere Wasser verschleißen die Anlagen langsamer. Ein Pilotprojekt der Energie- und Wasserversorgung Kirchzarten untersuchte Energiepotential und Wirtschaftlichkeit einer solchen Anlage. Als besten Standort identifizierten die Verantwortlichen den Zulauf zum Hochbehalter Giersberg, wo bei 75 Metern Gefälle durchschnittlich 30 m³ Wasser pro Stunde durch die Rohre fließen. Um die Wasserenergie auszunutzen, installierte das Wasserwerk eine speziell angefertigte Peltonturbine mit Generator im Zulauf zur Mischkammer. Über den fünfmonatigen Versuchzeitlauf hinweg erzeugte die Anlage rund 5040 kWh Strom, mit denen rund die Hälfte des Energiebedarfs des Kraftwerks gedeckt wurde. Damit sparte das Projekt circa acht Tonnen CO2 ein, wobei Energieerzeugung und CO2-Einsparung wegen der niedrigen Quellauschüttung geringer als erwartet ausfielen. Wegen des Klimawandels sind solch niedrige Quellstände und damit Einbußen bei den erwarteten Erträgen und Amortisationszeiten auch in Zukunft zu erwarten. Diese Erkenntnisse nutzen nach Projektende auch anderen Interessierten, die das Potential von Wasserkraft in Wasserwerken nutzen wollen. Drei wesentliche Erkenntnisse: Kontinuierliche Stromgewinnung und –abnahme sind Grundvoraussetzung für die Wirtschaftlichkeit eine Anlage. Diskontinuierlicher Betrieb setzt Speicheranlagen voraus, die die Wirtschaftlichkeit einer Anlage deutlich verschlechtern. Betriebssichere Wasserkraftanlagen mit hohem Wirkungsgrad sind noch nicht standardmäßig auf dem Markt erhältlich Klimaveränderungen und damit einhergehende geringere Quellwasserausschüttung stellen die zukünftige Nutzung und Wirtschaftlichkeit von Wasserkraftanlagen in Frage.